Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409580, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969620

RESUMO

Herein, we propose a regional functionalization molecular design strategy that enables independent control of distinct pivotal parameters through distinct segments of the molecule. Three novel blue emitters A-BN, DA-BN, and A-DBN, have been successfully synthesized by integrating highly rigid and three-dimensional adamantane-containing spirofluorene units into the MR framework. These molecules form two distinctive functional parts: part 1 comprises a boron-nitrogen (BN)-MR framework with adjacent benzene and fluorene units forming a central luminescent core characterized by an exceptionally rigid planar geometry, allowing for narrow FWHM values; part 2 includes peripheral mesitylene, benzene, and adamantyl groups, creating a unique three-dimensional "umbrella-like" conformation to mitigate intermolecular interactions and suppress exciton annihilation. The resulting A-BN, DA-BN, and A-DBN exhibit remarkably narrow FWHM values ranging from 18 to 14 nm and near-unity photoluminescence quantum yields. Particularly, OLEDs based on DA-BN and A-DBN demonstrate outstanding efficiencies of 35.0% and 34.3%, with FWHM values as low as 22 nm and 25 nm, respectively, effectively accomplishing the integration of high color purity and high device performance.

2.
Adv Mater ; : e2403584, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897229

RESUMO

Despite multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters with small full-width at half maximum are attractive for wide color-gamut display and eye-protection lighting applications, their inefficient reverse intersystem crossing (RISC) process and long exciton lifetime induce serious efficiency roll-off, which significantly limits their development. Herein, a novel device concept of building highly efficient tricomponent exciplex with multiple RISC channels is proposed to realize reduced exciton quenching and enhanced upconversion of nonradiative triplet excitons, and subsequently used as a host for high-performance MR-TADF organic light-emitting diodes (OLEDs). Compared with traditional binary exciplex, the tricomponent exciplex exhibits obviously improved photoluminescence quantum yield, emitting dipole orientation and RISC rate constant, and a record-breaking external quantum efficiency (EQE) of 30.4% is achieved for tricomponent exciplex p-PhBCzPh: PO-T2T: DspiroAc-TRZ (50: 20: 30) based OLED. Remarkably, maximum EQEs of 36.2% and 40.3% and ultralow efficiency roll-off with EQEs of 26.1% and 30.0% at 1000 cd m-2 are respectively achieved for its sky-blue and pure-green MR-TADF doped OLEDs. Additionally, the blue emission unit hosted by tricomponent exciplex is combined with an orange-red TADF emission unit to achieve a double-emission-layer blue-hazard-free warm white OLED with an EQEmax of 30.3% and stable electroluminescence spectra over a wide brightness range.

3.
Angew Chem Int Ed Engl ; : e202407502, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721850

RESUMO

Currently, much research effort has been devoted to improving the exciton utilization efficiency and narrowing the emission spectra of ultraviolet (UV) fluorophores for organic light-emitting diode (OLED) applications, while almost no attention has been paid to optimizing their light out-coupling efficiency. Here, we developed a linear donor-acceptor-donor (D-A-D) triad, namely CDFDB, which possesses high-lying reverse intersystem crossing (hRISC) property. Thanks to its integrated narrowband UV photoluminescence (PL) (λPL: 397 nm; FWHM: 48 nm), moderate PL quantum yield (ϕPL: 72 %, Tol), good triplet hot exciton (HE) conversion capability, and large horizontal dipole ratio (Θ//: 92 %), the OLEDs based on CDFDB not only can emit UV electroluminescence with relatively good color purity (λEL: 398 nm; CIEx,y: 0.161, 0.040), but also show a record maximum external quantum efficiency (EQEmax) of 12.0 %. This study highlights the important role of horizontal dipole orientation engineering in the molecular design of HE UV-OLED fluorophores.

4.
Angew Chem Int Ed Engl ; 63(16): e202401120, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38326521

RESUMO

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials hold great promise for advanced high-resolution organic light-emitting diode (OLED) displays. However, persistent challenges, such as severe aggregation-caused quenching (ACQ) and slow spin-flip, hinder their optimal performance. We propose a synergetic steric-hindrance and excited-state modulation strategy for MR-TADF emitters, which is demonstrated by two blue MR-TADF emitters, IDAD-BNCz and TIDAD-BNCz, bearing sterically demanding 8,8-diphenyl-8H-indolo[3,2,1-de]acridine (IDAD) and 3,6-di-tert-butyl-8,8-diphenyl-8H-indolo[3,2,1-de]acridine (TIDAD), respectively. These rigid and bulky IDAD/TIDAD moieties, with appropriate electron-donating capabilities, not only effectively mitigate ACQ, ensuring efficient luminescence across a broad range of dopant concentrations, but also induce high-lying charge-transfer excited states that facilitate triplet-to-singlet spin-flip without causing undesired emission redshift or spectral broadening. Consequently, implementation of a high doping level of IDAD-BNCz resulted in highly efficient narrowband electroluminescence, featuring a remarkable full-width at half-maximum of 34 nm and record-setting external quantum efficiencies of 34.3 % and 31.8 % at maximum and 100 cd m-2, respectively. The combined steric and electronic effects arising from the steric-hindered donor introduction offer a compelling molecular design strategy to overcome critical challenges in MR-TADF emitters.

5.
Dalton Trans ; 52(44): 16276-16284, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37855254

RESUMO

Azaacenes have attracted wide research interest due to their tremendous potential in organic electronics. However, near-infrared (NIR) light-emitting iridium(III) phosphors bearing azaacene derivatives are rarely investigated. In this contribution, two solution-processable heteroleptic iridium(III) complexes, namely DBPzIr and PPzIr, are rationally designed and synthesized, and they contain a rigid phenanthrene- or pyrene-fused diazaacene core and two peripheral groups of 4-tert-butyl-phenyl attached at the 12,13-positions in the core, respectively. The effects of the diazaacene core and appending groups on the optoelectronic properties of both complexes are systematically investigated. A dramatically red-shifted NIR emission peak at 789 nm with a photoluminescence quantum yield (PLQY) of 14% is observed in PPzIr compared with the 746 nm emission with a PLQY of 40% in DBPzIr. Taking advantage of their photophysical properties, the solution-processed device doped with DBPzIr achieves a maximum external quantum efficiency (EQEmax) of 8.00% with a radiance of 54 866 mW Sr-1 m-2 at 716 nm and the device doped with PPzIr exhibits a significantly red-shifted emission at 772 nm with an EQEmax of 3.53%. The achieved device performance is among the best values in the reported NIR-OLEDs based on iridium(III) complexes via a solution process at the same color gamut. Our study indicates that the reasonable collocation of the rigid diazaacene chelating core and flexible peripheral groups in the iridium(III) complex is of great significance in designing highly efficient NIR emitters.

6.
Adv Mater ; 35(39): e2303304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354127

RESUMO

Luminescent materials possessing a "hot-exciton" mechanism and aggregation-induced emission (AIE) qualities are well-suited for use as emitting materials in nondoped organic light-emitting diodes (OLEDs), particularly in deep-red regions where their ground state and singlet excited state surfaces are in proximity, leading to the formation of multiple nonradiative channels. However, designing molecules that artificially combine the hot-exciton mechanism and AIE attributes remains a formidable task. In this study, a versatile strategy is presented to achieve hot-exciton fluorescence with AIE property by increasing the first singlet excited (S1 ) state through modulation of the conjugation length of the newly created acceptor unit, matching the energy level of high-lying triplet (Tn ) states, and enhancing exciton utilization efficiency by employing suitable donor moieties. This approach reduces the aggregation-caused quenching (ACQ) in the aggregate state, resulting in the proof-of-concept emitter DT-IPD, which produces an unprecedented external quantum efficiency (EQE) of 12.2% and Commission Internationale de I'Eclairage (CIE) coordinates of (0.69, 0.30) in a deep-red non-doped OLED at 685 nm, representing the highest performance among all deep-red OLEDs based on materials with hot-exciton mechanisms. This work provides novel insights into the design of more efficient hot-exciton emitters with AIE properties.

7.
Chemistry ; 29(41): e202301197, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37154226

RESUMO

Near-infrared (NIR) organic light-emitting diodes (OLEDs) suffer from the low external electroluminescence (EL) quantum efficiency (EQE), which is a critical obstacle for potential applications. Herein, 1-oxo-1-phenalene-2,3-dicarbonitrile (OPDC) is employed as an electron-withdrawing aromatic ring, and by incorporating with triphenylamine (TPA) and biphenylphenylamine (BBPA) donors, two novel NIR emitters with thermally activated delayed fluorescence (TADF) characteristics, namely OPDC-DTPA and OPDC-DBBPA, are first developed and compared in parallel. Intense NIR emission peaks at 962 and 1003 nm are observed in their pure films, respectively. Contributed by the local excited (LE) characteristics in the triplet (T1 ) state in synergy with the charge transfer (CT) characteristics for the singlet (S1 ) state to activate TADF emission, the solution processable doped NIR OLEDs based on OPDC-DTPA and OPDC-DBBPA yield EL peaks at 834 and 906 nm, accompanied with maximum EQEs of 0.457 and 0.103 %, respectively, representing the state-of-the-art EL performances in the TADF emitter-based NIR-OLEDs in the similar EL emission regions so far. This work manifests a simple and effective strategy for the development of NIR TADF emitters with long wavelength and efficiency synchronously.

8.
Adv Mater ; 35(39): e2301929, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178057

RESUMO

Several thermally activated delayed fluorescence (TADF) materials have been studied and developed to realize high-performance organic light-emitting diodes (OLEDs). However, TADF macrocycles have not been sufficiently investigated owing to the synthetic challenges, resulting in limited exploration of their luminescent properties and the corresponding highly efficient OLEDs. In this study, a series of TADF macrocycles is synthesized using a modularly tunable strategy by introducing xanthones as acceptors and phenylamine derivatives as donors. A detailed analysis of their photophysical properties combined with fragment molecules reveals characteristics of high-performance macrocycles. The results indicate that: a) the ideal structure decreases the energy loss, which in turn reduces the non-radiative transitions; b) reasonable building blocks increase the oscillator strength providing a higher radiation transition rate; c) the horizontal dipole orientation (Θ) of the extended macrocyclic emitters is increased. Owing to the high photoluminescence quantum yields of ≈100% and 92% and excellent Θ of 80 and 79% for macrocycles MC-X and MC-XT in 5 wt% doped films, the corresponding devices exhibit record-high external quantum efficiencies of 31.6% and 26.9%, respectively, in the field of TADF macrocycles.

9.
Nat Commun ; 14(1): 2564, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142564

RESUMO

Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 106 s-1, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off.

10.
Adv Sci (Weinh) ; 10(12): e2207003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806703

RESUMO

Purely organic room-temperature phosphorescence (RTP) materials generally exhibit low phosphorescence quantum yield (ϕP ) and long phosphorescence lifetime (τP ) due to the theoretically spin-forbidden triplet state. Herein, by introducing a donor-acceptor (D-A) skeleton with a phenoxaselenine donor, three nonaromatic amine donor containing compounds with high ϕP and short τP in amorphous films are developed. Besides the enhanced spin-orbit coupling (SOC) by the heavy-atom effect of selenium, the D-A skeleton which facilitates orbital angular momentum change can further boost SOC, and severe nonradiative energy dissipation is also suppressed by the rigid molecular structure. Consequently, a record-high external quantum efficiency of 19.5% are achieved for the RTP organic light-emitting diode (OLED) based on 2-(phenoxaselenin-3-yl)-4,6-diphenyl-1,3,5-triazine (PXSeDRZ). Moreover, voltage-dependent color-tunable emission and single-molecule white emission are also realized. These results shed light on the broad prospects of purely organic phosphorescence materials as highly efficient OLED emitters especially for potential charming lighting applications.

11.
Animal Model Exp Med ; 5(6): 491-501, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36225094

RESUMO

BACKGROUND: Flight and freezing are two vital defensive behaviors that mice display to avoid natural enemies. When they are exposed to innate threats, visual cues are processed and transmitted by the visual system into the emotional nuclei and finally transmitted to the periaqueductal gray (PAG) to induce defensive behaviors. However, how the dorsal PAG (dPAG) encodes the two defensive behaviors is unclear. METHODS: Multi-array electrodes were implanted in the dPAG nuclei of C57BL/6 mice. Two kinds of visual stimuli (looming and sweeping) were used to induce defensive behaviors in mice. Neural signals under different defense behaviors were recorded, and the encoding characteristics of the two behaviors were extracted and analyzed from spike firing and frequency oscillations. Finally, synchronization of neural activity during the defense process was analyzed. RESULTS: The neural activity between flight and freezing behaviors showed different firing patterns, and the differences in the inter-spike interval distribution were mainly reflected in the 2-10 ms period. The frequency band activities under both defensive behaviors were concentrated in the theta band; the active frequency of flight was ~8 to 10 Hz, whereas that of freezing behavior was ~6 to 8 Hz. The network connection density under both defense behaviors was significantly higher than the period before and after defensive behavior occurred, indicating that there was a high synchronization of neural activity during the defense process. CONCLUSIONS: The dPAG nuclei of mice have different coding features between flight and freezing behaviors; during strong looming stimulation, fast neuro-instinctive decision making is required while encountering weak sweeping stimulation, and computable planning late behavior is predicted in the early stage. The frequency band activities under both defensive behaviors were concentrated in the theta band. There was a high synchronization of neural activity during the defense process, which may be a key factor triggering different defensive behaviors.


Assuntos
Emoções , Substância Cinzenta Periaquedutal , Ratos , Camundongos , Animais , Substância Cinzenta Periaquedutal/fisiologia , Ratos Wistar , Congelamento , Camundongos Endogâmicos C57BL
12.
Neurosci Lett ; 791: 136917, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252850

RESUMO

Circadian rhythm plays a significant role in maintaining the function of the cardiovascular system. Emerging studies have demonstrated that circadian disruption enhances the risk of cardiovascular diseases by activating the sympathetic nervous system; however, the underlying mechanisms remain unknown. Therefore, this study aimed to clarify the role of oxidative stress in the rostral ventrolateral medulla (RVLM) in sympathetic hyperactivity induced by circadian disruption. Rats were randomly divided into two groups: the normal light and dark (LD) group and the circadian disruption (CD) group. Sympathetic nerve activity of rats was assessed by recording renal sympathetic nerve activity (RSNA) and indirect methods such as plasma level of norepinephrine (NE). The level of oxidative stress in the RVLM was detected by dihydroethidium probes. Moreover, the expression levels of the oxidative stress-related proteins in the RVLM were detected by Western blotting. Circadian disruption significantly increased blood pressure (BP), RSNA, and plasma levels of NE. Compared to the LD group, the CD group exhibited a more significant depressor response to i.v. hexamethonium bromide, a ganglionic blocker. Furthermore, the reactive oxygen species (ROS) production in the RVLM of rats with circadian disruption was significantly increased. In addition, BP and RSNA of rats with circadian disruption exhibited a greater decrease in the effects of microinjection of tempol, a superoxide scavenger, into the RVLM, compared to artificial cerebrospinal fluid (aCSF). Further investigation of the molecular mechanism by Western blotting showed that nuclear factor-erythroid-2-related factor 2 (Nrf2)/heme oxygenase 1 (HO1)/NAD(P)H: quinone oxidoreductase 1 (NQO1) signaling was down-regulated in the RVLM of circadian disruption rats. These data suggest that oxidative stress in the RVLM mediates sympathetic hyperactivity induced by circadian disruption and possibly by down-regulating Nrf2/HO1/NQO1 signaling.


Assuntos
Hipertensão , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Bulbo , Sistema Nervoso Simpático , Estresse Oxidativo/fisiologia , Superóxidos/metabolismo , Superóxidos/farmacologia , Pressão Sanguínea , Hipertensão/metabolismo , Frequência Cardíaca
13.
Molecules ; 27(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36014422

RESUMO

Aromatic imide derivatives play a critical role in boosting the electroluminescent (EL) performance of organic light-emitting diodes (OLEDs). However, the majority of aromatic imide-based materials are limited to long wavelength emission OLEDs rather than blue emissions due to their strong electron-withdrawing characteristics. Herein, two novel polycyclic fused amide units were reported as electron acceptor to be combined with either a tetramethylcarbazole or acridine donor via a phenyl linker to generate four conventional fluorescence blue emitters of BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC for the first time. BSQ-4MeCz and BSQ-DMAC based on a BSQ unit exhibited higher thermal stability and photoluminescence quantum yields than BBI-4MeCz and BBI-DMAC based on a BBI unit due to their more planar acceptor structure. The intermolecular interactions that exist in the BSQ series materials effectively inhibit the molecular rotation and configuration relaxation, and thus allow for blue-shifted emissions. Blue OLED devices were constructed with the developed materials as emitters, and the effects of both the structure of the polycyclic fused amide acceptor and the electron donor on the EL performance were clarified. Consequently, a sky-blue OLED device based on BSQ-DMAC was created, with a high maximum external quantum efficiency of 4.94% and a maximum luminance of 7761 cd m-2.

14.
Front Psychol ; 13: 870069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719573

RESUMO

The main purpose of the study was to explore Chinese student teachers' experience during their practicum and what they reported as ethical dilemmas and how these experiences affected them in terms of professional development as well as emotional well-being. Through the analysis of qualitative data collected from forty-three participants' interviews, this study identified six most commonly reported ethical dilemmas, including: formal curriculum versus informal and hidden curriculum; family agenda versus educational standards; loyalty to colleagues versus school norms; confidentiality versus school rules; conformism dilemmas and red-envelope dilemmas and found that dilemmas about formal curriculum versus informal and hidden curriculum were the dominant workplace ethical dilemma for student teachers. The results also showed that the majority of the student teachers reported experiencing negative emotions or painful memories, which may hinder their development of professional competencies and overall wellbeing. Thus, the study argues that student teachers' frequent encounters with ethical dilemmas highlight the challenges faced by teacher educators in transferring knowledge between university and school environments, and student teachers should be equipped with essential emotional regulation strategies that could benefit them in their future work.

15.
Neuroscience ; 496: 230-240, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724770

RESUMO

Animals perceive threat information mainly from vision, and the subcortical visual pathway plays a critical role in the rapid processing of fear visual information. The superior colliculus (SC) and lateral posterior (LP) nuclei of the thalamus are key components of the subcortical visual pathway; however, how animals encode and transmit fear visual information is unclear. To evaluate the response characteristics of neurons in SC and LP thalamic nuclei under fear visual stimuli, extracellular action potentials (spikes) and local field potential (LFP) signals were recorded under looming and dimming visual stimuli. The results showed that both SC and LP thalamic nuclei were strongly responsive to looming visual stimuli but not sensitive to dimming visual stimuli. Under the looming visual stimulus, the theta (θ) frequency bands of both nuclei showed obvious oscillations, which markedly enhanced the synchronization between neurons. The functional network characteristics also indicated that the network connection density and information transmission efficiency were higher under fear visual stimuli. These findings suggest that both SC and LP thalamic nuclei can effectively identify threatening fear visual information and rapidly transmit it between nuclei through the θ frequency band. This discovery can provide a basis for subsequent coding and decoding studies in the subcortical visual pathways.


Assuntos
Núcleos Posteriores do Tálamo , Colículos Superiores , Animais , Medo/fisiologia , Núcleos Laterais do Tálamo/fisiologia , Camundongos , Núcleos Posteriores do Tálamo/fisiologia , Colículos Superiores/fisiologia , Núcleos Talâmicos/fisiologia , Vias Visuais/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-35162572

RESUMO

As the concern for environmental pollution and occupational safety caused by the construction industry is gradually increasing worldwide, the prefabricated building model has become a type of construction promoted by sustainable societies. In China, the management codes of prefabricated buildings are not mature enough and safety accidents occur frequently during the construction process. Therefore, how to analyze and determine the main factors that affect the safety of the construction of prefabricated buildings has become a problem to protect the lives and health of construction workers. In this study, we focused our research on the accident-prone component-hoisting construction phase. First, through the questionnaire and accident data, the traditional human factors analysis and classification system (HFACS) was improved into the HFACS-prefabricated building hoisting (PH) risk model. This study also established a comprehensive safety prevention and control system for the component-hoisting process of prefabricated buildings by combining the factor analysis of using structural equation modeling (SEM). The prevention and control measures to avoid the occurrence of prefabricated building component-hoisting accidents were also proposed from four aspects: external environment, organizational factors, prerequisites for triggering accidents, and unsafe leadership behaviors. The results showed the following: (1) For the external environment, occupational safety and health system standards should be established and safety supervision responsibilities should be implemented. (2) For organizational factors, safety management systems should be improved with more capital investment. (3) For unsafe leadership behaviors, safety education and training should be strengthened to ensure workers' optimal physical and psychological states. (4) For the prerequisite of accidents, it is necessary to create a good hoisting work environment.


Assuntos
Indústria da Construção , Saúde Ocupacional , Acidentes de Trabalho/prevenção & controle , Análise Fatorial , Humanos , Análise de Classes Latentes
17.
J Pediatr Surg ; 57(9): 192-201, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35033353

RESUMO

BACKGROUND: Neuroblastoma (NB) comprises about 8-10% of pediatric cancers, and microRNA (miR)-338 downregulation has been implicated in NB. However, the underlying molecular mechanism remains largely unclear. The main goal of this study is to probe the regulatory role of miR-338 and the upstream and downstream biomolecules involved in NB. METHODS: The differentially expressed miRNAs were screened by analyzing the NB gene expression microarray GSE121513 from the GEO database, and the differences in expression of the screened miRNAs were verified in clinically collected NB tissues versus dorsal root ganglions. Subsequently, the relationship between the miR-338 expression and NB cell growth was validated in vitro and in vivo, and the upstream and downstream regulatory mechanisms of miR-338 were further analyzed by bioinformatics. Functional rescue experiments were used to verify their effects on NB cell growth. RESULTS: miR-338 expressed poorly in NB tissues, and overexpression of miR-338 significantly inhibited NB cell growth in vitro and in vivo. The prediction results showed that miR-338 could target KIF1A, and miR-338 expression was negatively correlated with the expression of KIF1A. We further found that miR-338 was transcriptionally regulated by the transcription factor KLF5. Overexpression of KLF5 or KIF1A significantly attenuated the inhibitory effect of miR-338 mimic on NB cell growth. Finally, miR-338 blocked the Hedgehog signaling pathway by inhibiting the expression of KIF1A. CONCLUSION: Overexpression of KLF5 reduced expression of miR-338, which in turn increased the expression of KIF1A and activated the Hedgehog signaling pathway, leading to the progression of NB.


Assuntos
Cinesinas , MicroRNAs , Neuroblastoma , Proliferação de Células/genética , Criança , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo
18.
Brain Behav ; 12(2): e2401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060363

RESUMO

BACKGROUND: Neuroblastoma (NB) is an infrequent childhood malignancy of the peripheral sympathetic nervous system and is accountable for about 10% of pediatric tumors. microRNA (miR)-125a has been implicated to serve as a tumor suppressor in various cancers. Herein, we set out to ascertain whether miR-125a exerts antitumor effects in NB. METHODS: Downregulated miRNAs were identified by miRNA microarray analysis of NB tissues and paracancerous tissues. The expression of miR-125a in NB tissues and cells was detected by reverse transcription-quantitative (RT-q) PCR, followed by prognostic analysis. Gene Ontology (GO) enrichment analysis was performed on target genes of differentially expressed miRNAs. Cell proliferation, apoptosis, and differentiation were detected by cell counting kit-8 (CCK-8), Hoechst staining, immunofluorescence, and western blot. NB cells were injected into nude mice to detect tumorigenic, apoptotic, and differentiation activities in vivo. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) were carried out to verify the binding relationship between miR-125a and PHOX2B or histone deacetylases 2 (HDAC2), respectively. Finally, rescue experiments were conducted. RESULTS: miR-125a was downregulated in NB tissues and cells, which was associated with poor prognosis. miR-125a reduced NB cell proliferation and augmented apoptosis and differentiation. NB cells with miR-125a overexpression decreased cell tumorigenesis and increased apoptosis and differentiation in xenograft tumor tissues. miR-125a targeted PHOX2B, which was highly expressed in NB tissues and cells. HDAC2, highly expressed in NB tissues and cells, repressed miR-125a transcription through histone deacetylation. Overexpression of HDAC2 or PHOX2B rescued the effects of miR-125a on NB cell proliferation, apoptosis, and differentiation. CONCLUSION: HDAC2 inhibited miR-125a transcription through deacetylation, and miR-125a suppressed NB development through binding to PHOX2B.


Assuntos
MicroRNAs , Neuroblastoma , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neuroblastoma/genética
19.
Langmuir ; 38(2): 863-869, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34968065

RESUMO

Patterned surfaces combining hydrophobic and hydrophilic properties show great promise in moisture condensation; however, a comprehensive understanding of the multiscale interfacial behavior and the further controlling method is still lacking. In this paper, we studied the moisture condensation on a hybrid superhydrophobic-hydrophilic surface with hierarchical structures from micro- to nanoscale. For the first time, we demonstrated the effects of wettability difference and microstructure size on the final condensation efficiency. By optimizing the wettability difference, sub-millimeter pattern width, and microstructure size, maximum 90% enhancement of the condensation rate was achieved as compared with the superhydrophobic surface at a subcooling of 13 K. We also demonstrated the enhanced condensation mechanism by a detailed analysis of the condensation process. Our work proposed effective and systematical methods for controlling and optimizing moisture condensation on the patterned surfaces and shed light on application integration of such promising functional surfaces.

20.
ACS Appl Mater Interfaces ; 13(46): 55412-55419, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34756020

RESUMO

Metal halide perovskites have attracted extensive attention in next-generation solid-state lighting and displays due to their fascinating optoelectronic properties. However, the toxicity of lead (Pb) impedes their practical application. Herein, we report an efficient Zn-alloyed quasi-two-dimensional (quasi-2D) pure-red perovskite light-emitting device (PeLED) by introducing zinc ions (Zn2+) into the perovskite lattice and partially substituting Pb2+. The substitution of Zn2+ is confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, grazing-incidence wide-angle X-ray scattering, and transmission electron microscopy measurements. In addition, the vacancy defect density of Pb and the halogen is reduced by the introduction of Zn2+ in the PEA2(Cs0.3MA0.7)2(ZnxPb1-x)3I10 perovskite system, which leads to a more ordered crystal orientation, compact morphology, and increased photoluminescence quantum efficiency. Benefiting from the improved photoelectric properties, a maximum EQE of 9.5% and a luminescence of 453 cd m-2 are achieved for the Zn-alloyed PeLEDs, with a maximum emission peak of 658 nm and stable electroluminescence spectra under various applied biases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA