Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(42): 9441-9447, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827112

RESUMO

The advancement of science and technology is always accompanied by better manufacturing precision. Ideally, the highest precision for manufacturing a surface is truly atomic flatness, which implies that all topmost surface atoms are in a single layer of the crystal face. However, almost no methods can achieve this surface with high efficiency at present. Herein, we present a method to fabricate a large-scale truly atomically flat surface with ultrafast speed. Through the selective etching of surface atoms, our method can achieve an atomically flat surface with 0.05 nm Sa roughness. It is notable that the polishing efficiency of our method is more than 1000 times higher than that of conventional methods. We have demonstrated its generality on various single-crystal materials and obtained atomic roughness and an ultrahigh polishing rate. This method has the potential to promote the mass-production of atomic-scale smooth surfaces, the application of third-generation semiconductor materials, and the innovation of advanced technologies.

2.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299893

RESUMO

With the miniaturization and high-frequency requirements of quartz crystal sensors, microscopic issues affecting operating performance, e.g., the surface roughness, are receiving more and more attention. In this study, the activity dip caused by surface roughness is revealed, with the physical mechanism clearly demonstrated. Firstly, the surface roughness is considered as a Gaussian distribution, and the mode coupling properties of an AT-cut quartz crystal plate are systematically investigated under different temperature environments with the aid of two-dimensional thermal field equations. The resonant frequency, frequency-temperature curves, and mode shapes of the quartz crystal plate are obtained through the partial differential equation (PDE) module of COMSOL Multiphysics software for free vibration analysis. For forced vibration analysis, the admittance response and phase response curves of quartz crystal plate are calculated via the piezoelectric module. The results from both free and forced vibration analyses demonstrate that surface roughness reduces the resonant frequency of quartz crystal plate. Additionally, mode coupling is more likely to occur in a crystal plate with a surface roughness, leading to activity dip when temperature varies, which decreases the stability of quartz crystal sensors and should be avoided in device fabrication.


Assuntos
Quartzo , Vibração , Quartzo/química
3.
Micromachines (Basel) ; 14(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985076

RESUMO

Lubricants have the ability to reduce frictions, prevent wear, convey metal debris particles and increase the efficiency of heat transfer; therefore, they have been widely used in mechanical systems. To assess the safety and reliability of the machine under operational conditions, the development of inductive debris sensors for the online monitoring of debris particles in lubricants has received more attention from researchers. To achieve a high-precision, high-efficiency sensor for accurate prediction on the degree of wear, the equivalent circuit model of the sensor coil has been established, and its equations discovering the relationship between the induced voltage and excitation frequency have been derived. Furthermore, the influence of excitation frequencies and metal debris on the magnetic flux density has been analyzed throughout the simulations to determine the sensor magnetic field. In order to identify a frequency range suitable for detecting both ferrous and non-ferrous materials with a high level of sensitivity, the analytical analysis and experiments have been conducted to investigate the frequency characteristics of the developed inductive debris sensor prototype and its improved inspection capability. Moreover, the developed inductive debris sensor with the noticeable frequency characteristics has been assessed and its theoretical model has been also validated throughout experimental tests. Results have shown that the detection sensitivity of non-ferrous debris by the developed sensor increases with the excitation frequency in the range of 50 kHz to 250 kHz, while more complex results for the detection of ferrous debris have been observed. The detection sensitivity decreases as the excitation frequency increases from 50 kHz to 300 kHz, and then increases with the excitation frequency from 300 kHz to 370 kHz. This leads to the effective selection of the excitation frequency in the process of inspection. In summary, the investigation into the frequency characteristics of the proposed novel inductive debris sensor has enabled its broad applications and also provided a theoretical basis and valuable insights into the development of inductive debris sensors with improved detection sensitivity.

4.
Polymers (Basel) ; 15(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850095

RESUMO

Viscoelastic fibre prestressing (VFP) is a promising technique to counterbalance the potential thermal residual stress within a polymeric composite, offering superior mechanical benefits for structural engineering applications. It has been demonstrated that the time required for a desirable creep strain can be significantly reduced by implementing higher creep stress, while its long-term stability is still unknown. Here, we developed the prestress equivalence principle and investigated the durability of viscoelastic fibre prestressing within a composite in order to further enrich the prestress mechanisms. The effectiveness of the prestress equivalence principle was refined through Charpy impact testing of prestressed samples with various pre-strain levels. The durability was investigated by subjecting samples to both natural aging (up to 0.5 years) and accelerated aging (by using the time-temperature superposition principle). It is found that the prestress equivalence principle offers flexibility for viscoelastically prestressed polymeric matrix composite (VPPMC) technology; the impact benefits offered by VFP are still active after being accelerated aged to an equivalent of 20,000 years at 20 °C, inferring long-term reliability of VFP-generated fibre recovery within a polymeric composite. These findings demonstrated that both materials and energy consumption could be conserved for advanced composites. Therefore, they promote further steps of VPPMC technology toward potential industrial applications, especially for impact protection.

5.
Ultrasonics ; 128: 106884, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410124

RESUMO

Air-coupled ultrasonic testing and C-scan technique has been increasingly applied to the braided CFRP structures owing to its non-destruction, non-contact and high visualization characteristics. Due to the noise, structural vibration, and airflow in the process of detection, the accuracy of defect identification is easily deteriorated. To address this issue and further determine the relationship between the ultrasonic acoustical pressure attenuation and structural parameters, a novel two-level identification method based on the modified two-dimensional variational mode decomposition (2D-VMD) has been proposed. In the first level, C-scan images have been sparsely decomposed into ensembles of modes by 2D-VMD method. Then, the modes have been screened by mutual information method to realize the reconstruction of new image in the second level. Experimental results have shown that the proposed method has the good ability to identify defects with a minimum detectable diameter of 1-2 mm. It has been noted that the ultrasonic acoustical pressure attenuation has become remarkably higher in the twill weave CFRP than the plain weave CFRP and the ratio of pressure attenuation between two weave types of CFRP has decreased with the defect depth increase. Meanwhile, shadows around defects in C-scan images have been suppressed to a great extent. It has been demonstrated that the capability of denoising has enabled the developed method with the accurate detection in terms of the shape, size, depth and weave type. With these advantages, the proposed method has provided valuable insights into the development of an effective method for defect detection of braided CFRP structures.

6.
Ultrasonics ; 120: 106660, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34954477

RESUMO

Non-uniform mechanical strain can be easily induced at the interface of a piezoelectric semiconductive (PS) PN junction with variable cross sections by using piezoactive acoustic waves, and thus produces a giant piezoelectric field to significantly enhance the piezotronic effect. For revealing the piezotronic performance modulation in the non-uniform PS PN junction, the electromechanical field under a pair of applied end mechanical forces is studied from perspectives of theoretical analysis and numerical simulations. A one-dimensional linearized model for the PS fiber is established, which is applied for the mechanical analysis of a selected profile with the cross section varying in a specific quadratic function. Numerical results indicate that the acoustoelectric fields in the space charge region of the non-uniform PS PN junction are more sensitive to the applied mechanical forces, compared with that of the uniform junction, especially for a heterogeneous PN junction. Furthermore, the current-voltage relations of a necking PS PN junction can be modulated more easily by the end mechanical forces. Both qualitative conclusions and quantitative results can offer guidance for the piezotronic device design.

7.
Sensors (Basel) ; 21(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833634

RESUMO

Lubricants are of key importance for mechanical processing, and exist in nearly every mechanical system. When the equipment is in operation, debris particles will be generated in mechanical lubricants. The detection of debris particles can indicate the wear degree of machinery components, and provide prognosis warning for the system before the fault occurs. In this work, a novel type of inductive debris sensor consisting of two excitation coils and two sensing coils is proposed for online debris monitoring. The developed sensor was proven to be of high sensitivity through experimental verification. The testing results show that, using the designed sensor, ferrous metal debris with a size of 115 µm and nonferrous metal debris with a size of 313 µm in a pipe with an inner diameter of 12.7 mm can be effectively detected. Moreover, the proposed inductive debris sensor structure has better sensitivity at higher throughput and its design provides a useful insight into the development of high-quality sensors with superior performances.


Assuntos
Metais
8.
Ultrasonics ; 115: 106465, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34015692

RESUMO

In this paper, an electromagnetic acoustic transducer (EMAT) for generating and receiving omnidirectional shear-horizontal (OSH) wave in aluminum plate is developed. The proposed OSH-EMAT consists of a specially designed printed circuit board (PCB) coil and a pair of half-ring magnets. Vertical oriented static magnetic field and the radial alternative eddy current are applied to excite the Lorentz force along the circumferential direction. A three-dimensional finite element model has been established to simulate the distributions of the static magnetic flux, the eddy current, and the exciting process of SH wave. Further experimental results show that the proposed electromagnetic ultrasonic transducer has good consistency in the performance of omnidirectional excitation and reception. The new OSH-EMAT design has the potential for many non-destructive testing applications owing to its low cost, acceptable accuracy and convenient processing and fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA