Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(9): e2400360, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295561

RESUMO

Global climate deterioration intensifies the demand for exploiting efficient CO2 utilization approaches. Converting CO2 to biorefinery feedstock affords an alternative strategy for third-generation biorefineries. However, upcycling CO2 into complex chiral carbohydrates remains a major challenge. Previous attempts at sugar synthesis from CO2 either produce mixtures with poor stereoselectivity or require ATP as a cofactor. Here, by redesigning glycolaldehyde synthase, the authors constructed a synthetic pathway for biorefinery feedstock D-xylulose from CO2 that does not require ATP as a cofactor. The artificial D-xylulose pathway only requires a three-step enzyme cascade reaction to achieve the stereoselective synthesis of D-xylulose at a concentration of 1.2 g L-1. Our research opens up an alternative route toward future production of chemicals and fuels from CO2.


Assuntos
Xilulose , Xilulose/metabolismo , Xilulose/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Engenharia Metabólica/métodos , Acetaldeído/análogos & derivados
2.
Front Microbiol ; 15: 1443295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228381

RESUMO

Currently, the efficacy of vaccination for preventing and controlling PRRSV is insufficient. Therefore, there is an urgent need for novel effective preventive strategies. This study aimed to investigate the antiviral effect of Eucalyptus essential oil (EEO) against PRRSV in vitro. Marc-145 cells were infected with PRRSV (rJXA1-R), and the toxicity of EEO in the cells was measured using the Cell Counting Kit-8 method. Additionally, the antiviral effect of EEO on PRRSV-infected cells was assessed using three treatment methods: drug administration post-PRRSV inoculation (post-treatment), drug administration before PRRSV inoculation (pre-treatment), and simultaneous drug administration and PRRSV inoculation (co-treatment). The EEO could not inhibit virus adsorption and/or replication since post-treatment and pre-treatment did not prevent viral infectivity. However, EEO exerted a significant virucidal effect on PRRSV. When PRRSV-infected cells were treated with 0.0156, 0.0312, and 0.0625% EEO, the cell survival rates were 55.37, 118.96, and 121.67%, respectively, and the titer of progeny virions decreased from 5.77 Log10TCID50 to 5.21 Log10TCID50, 0.55 Log10TCID50, and less than 0.167 Log10TCID50, respectively (where TCID50 is the 50% tissue culture infected dose). The fluorescence intensity of the PRRSV N protein significantly decreased in the indirect immunofluorescence assay. When cells were co-treated with EEO (0.0625%) and PRRSV (1000 TCID50) for 15 min, the viral particles were inactivated, and PRRSV (1000 TCID50) particles loss infectivity when the co-treatment time reached 60 min. In a word, EEO has no obvious therapeutic effect on PRRSV infection, but it can effectively inactivate virus particles and make them lose the ability to infect cells. These findings provide insights for the development and use of EEO to treat PRRS.

3.
Int J Psychophysiol ; 204: 112424, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39178992

RESUMO

Economic decision-making plays a paramount role in both individual and national interests. Individuals have fairness preferences in economic decision-making, but a proposer's moral-related information may affect fairness considerations. In prior ERP studies, researchers have suggested moral identity influences fairness preferences in the Ultimatum Game (UG), but there are discrepancies in the results. Furthermore, whether role models (individuals whom someone else looks to help decide suitable behaviors), who can modulate people's moral standards, can affect fairness concerns in UG is still understudied. To address the questions, we selected the moral-related statements by eliminating those with illegal information and employed the ERP technique to explore whether the interplay of the proposer's role model and moral-related behavior influenced fairness processing in the modified UG and the corresponding neural mechanisms. We mainly found that the aforementioned interaction effect on proposal considerations in UG could be mirrored in both rejection rates and P300 variations. The results demonstrate that the interaction between the proposer's role model and moral behavior can modulate fairness concerns in UG. Our current work provides new avenues for elucidating the time course of the influencing mechanism of fair distributions in complicated social environments.


Assuntos
Tomada de Decisões , Eletroencefalografia , Princípios Morais , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Tomada de Decisões/fisiologia , Jogos Experimentais , Potenciais Evocados/fisiologia , Potenciais Evocados P300/fisiologia , Comportamento Social
4.
Environ Pollut ; 361: 124717, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147225

RESUMO

The domestic combustion of locally sourced smoky (bituminous) coal in Xuanwei and Fuyuan counties, China, is responsible for some of the highest lung cancer rates in the world. Recent research has pointed to methylated PAHs (mPAHs), particularly 5-methylchrysene (5MC), within coal combustion products as a driving factor. Here we describe measurements of mPAHs in Xuanwei and Fuyuan derived from controlled burnings (i.e., water boiling tests, WBT, n = 27) representing exposures during stove use, and an exposure assessment (EA) study (n = 116) representing 24 h weighted exposures. Using smoky coal has led to significantly higher concentrations of known and likely human carcinogens than using smokeless coal, including 5MC (3.7 ng/m3 vs. 1.0 ng/m3 for EA samples and 100.8 ng/m3 vs. 2.2 ng/m3 for WBT samples), benzo[a]pyrene (38.0 ng/m3 vs. 7.9 ng/m3 for EA samples and 455.3 ng/m3 vs. 12.0 ng/m3 for WBT samples) and 7,12-dimethylbenz[a]anthracene (1.9 ng/m3 vs. 0.2 ng/m3 for EA samples and 47.7 ng/m3 vs. 0.6 ng/m3 for WBT samples). Mixed effect models for both EA samples and WBT samples revealed clear variation in mPAHs concentrations depending on smoky coal source while stove ventilation was consistently found to reduce measured concentrations (by up to nine fold and 65 fold for EA and WBT samples respectively when using smoky coal). Fuel type had a larger influence on mPAHs concentrations than stove type. These findings indicate that users of smoky coal experience exposure to many PAHs, including known and suspected human carcinogens (especially during cooking activities), many of which are not routinely tested for. Collectively, this provides insights into the potential etiologies of lung cancer in the region and further highlights the importance of targeting clean fuel transitions and stove refinements as the final goal for reducing household air pollution and its associated health risks.

5.
Animals (Basel) ; 14(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38997973

RESUMO

The Hepatitis E virus (HEV) causes acute and chronic Hepatitis E and is a global public health concern. HEV genotypes 3 (HEV-3) and 4 (HEV-4) are common to humans and animals, and domestic pigs and wild boars have been identified as the main reservoirs. However, limited information is available on the status of HEV infection in pigs, particularly in the Guangdong Province, China. This study aimed to investigate the seroprevalence of HEV in pig farms within the Guangdong Province. A total of 1568 serum samples were collected from 25 farms and tested for anti-HEV IgG antibodies. Enzyme-linked immunosorbent assay (ELISA) results revealed that 57.53% (902/1568) of serum samples from 24 farms (24/25, 96%) were positive for anti-HEV IgG antibodies. Year, season, region, and age were all linked risk factors for HEV in Guangdong, with season and region showing more significant impacts. The results showing a high seroprevalence of HEV confirmed its circulation among domestic pigs in the Guangdong Province, China. The presence of this antibody indicates that HEV infection was or is present on farms, posing a risk of zoonotic transmission of HEV from pigs to exposed workers and from pork or organs to consumption.

6.
Front Microbiol ; 15: 1413120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966388

RESUMO

While poly (3-hydroxybutyrate) (PHB) holds promise as a bioplastic, its commercial utilization has been hampered by the high cost of raw materials. However, glycerol emerges as a viable feedstock for PHB production, offering a sustainable production approach and substantial cost reduction potential. Glycerol stands out as a promising feedstock for PHB production, offering a pathway toward sustainable manufacturing and considerable cost savings. The identification and characterization of strains capable of converting glycerol into PHB represent a pivotal strategy in advancing PHB production research. In this study, we isolated a strain, Ralstonia sp. RRA (RRA). The strain exhibits remarkable proficiency in synthesizing PHB from glycerol. With glycerol as the carbon source, RRA achieved a specific growth rate of 0.19 h-1, attaining a PHB content of approximately 50% within 30 h. Through third-generation genome and transcriptome sequencing, we elucidated the genome composition and identified a total of eight genes (glpR, glpD, glpS, glpT, glpP, glpQ, glpV, and glpK) involved in the glycerol metabolism pathway. Leveraging these findings, the strain RRA demonstrates significant promise in producing PHB from low-cost renewable carbon sources.

7.
Biodes Res ; 6: 0039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081856

RESUMO

Terpenoids of substantial industrial interest are mainly obtained through direct extraction from plant sources. Recently, microbial cell factories or in vitro enzymatic biosystems have emerged as promising alternatives for terpenoid production. Here, we report a route for the synthesis of α-farnesene based on an in vitro enzyme cascade reaction using methanol as an inexpensive and renewable C1 substrate. Thirteen biocatalytic reactions divided into 2 modules were optimized and coupled to achieve methanol-to-α-farnesene conversion via integration with natural thylakoid membranes as a green energy engine. This in vitro enzymatic biosystem driven by light enabled the production of 1.43 and 2.40 mg liter-1 α-farnesene using methanol and the intermediate glycolaldehyde as substrates, respectively. This work could provide a promising strategy for developing light-powered in vitro biosynthetic platforms to produce more natural compounds synthesized from C1 substrates.

8.
Diabetes ; 73(8): 1336-1351, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775784

RESUMO

Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human ß-cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult ß-cells and is expressed to a greater extent in fetal ß-cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of ß-cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SC-islets and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human ß-cells, and identify them as key components in establishing species-specific glycemic set points.


Assuntos
Transportador de Glucose Tipo 1 , Transportador de Glucose Tipo 2 , Células Secretoras de Insulina , Humanos , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Animais , Camundongos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Glucose/metabolismo , Secreção de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo
9.
Int J Psychophysiol ; 201: 112360, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735630

RESUMO

Economic decision-making is pivotal to both human private interests and the national economy. People pursue fairness in economic decision-making, but a proposer's moral identity can influence fairness processing. Previous ERP studies have revealed that moral identity has an effect on fairness considerations in the Ultimatum Game (UG), but the findings are inconsistent. To address the issue, we revised the moral-related sentences and used the ERP technique to measure the corresponding neural mechanism. We have observed that the fairness effect in UG can be mirrored in both MFN and P300 changes, whereas the moral identity effect on fairness in UG can be reflected by MFN but not P300 changes. These findings indicate that the moral identity of the proposer can modulate fairness processing in UG. The current study opens new avenues for clarifying the temporal course of the relationship between the proposer's moral identity and fairness in economic decision-making, which is beneficial for understanding the influencing mechanism of fairness processing and fair allocations in complex social contexts.


Assuntos
Tomada de Decisões , Potenciais Evocados , Jogos Experimentais , Princípios Morais , Humanos , Masculino , Adulto Jovem , Feminino , Tomada de Decisões/fisiologia , Adulto , Potenciais Evocados/fisiologia , Eletroencefalografia , Encéfalo/fisiologia
10.
Biodes Res ; 6: 0031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572349

RESUMO

Protein engineering aimed at increasing temperature tolerance through iterative mutagenesis and high-throughput screening is often labor-intensive. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein high-temperature tolerance by generating and selecting functional sequences using deep learning models. Drawing inspiration from the concept of evolution, we constructed a high-temperature tolerance selector based on a protein language model, acting as selective pressure in the high-dimensional latent spaces of protein sequences to enrich those with high-temperature tolerance. Simultaneously, we developed a variant generator using a generative adversarial network to produce protein sequence variants containing the desired function. Afterward, the iterative process involving the generator and selector was executed to accumulate high-temperature tolerance traits. We experimentally tested this approach on the model protein glyceraldehyde 3-phosphate dehydrogenase, obtaining 8 variants with high-temperature tolerance from just 30 generated sequences, achieving a success rate of over 26%, demonstrating the high efficiency of DeepEvo in engineering protein high-temperature tolerance.

11.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37961332

RESUMO

Understanding diverse responses of individual cells to the same perturbation is central to many biological and biomedical problems. Current methods, however, do not precisely quantify the strength of perturbation responses and, more importantly, reveal new biological insights from heterogeneity in responses. Here we introduce the perturbation-response score (PS), based on constrained quadratic optimization, to quantify diverse perturbation responses at a single-cell level. Applied to single-cell transcriptomes of large-scale genetic perturbation datasets (e.g., Perturb-seq), PS outperforms existing methods for quantifying partial gene perturbation responses. In addition, PS presents two major advances. First, PS enables large-scale, single-cell-resolution dosage analysis of perturbation, without the need to titrate perturbation strength. By analyzing the dose-response patterns of over 2,000 essential genes in Perturb-seq, we identify two distinct patterns, depending on whether a moderate reduction in their expression induces strong downstream expression alterations. Second, PS identifies intrinsic and extrinsic biological determinants of perturbation responses. We demonstrate the application of PS in contexts such as T cell stimulation, latent HIV-1 expression, and pancreatic cell differentiation. Notably, PS unveiled a previously unrecognized, cell-type-specific role of coiled-coil domain containing 6 (CCDC6) in guiding liver and pancreatic lineage decisions, where CCDC6 knockouts drive the endoderm cell differentiation towards liver lineage, rather than pancreatic lineage. The PS approach provides an innovative method for dose-to-function analysis and will enable new biological discoveries from single-cell perturbation datasets.

12.
Front Microbiol ; 14: 1293363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033593

RESUMO

Background: The increase in antibiotic resistance of bacteria has become a major concern in clinical treatment. Silver nanoparticles (AgNPs) have significant antibacterial effects against Streptococcus suis. Therefore, this study aimed to investigate the antibacterial activity and mechanism of action of AgNPs against multidrug-resistant S. suis. Methods: The effect of AgNPs on the morphology of multidrug-resistant S. suis was observed using scanning electron microscopy (SEM). Differentially expressed proteins were analyzed by iTRAQ quantitative proteomics, and the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining. Results: SEM showed that AgNPs disrupted the normal morphology of multidrug-resistant S. suis and the integrity of the biofilm structure. Quantitative proteomic analysis revealed that a large number of cell wall synthesis-related proteins, such as penicillin-binding protein and some cell cycle proteins, such as the cell division protein FtsZ and chromosomal replication initiator protein DnaA, were downregulated after treatment with 25 µg/mL AgNPs. Significant changes were also observed in the expression of the antioxidant enzymes glutathione reductase, alkyl hydroperoxides-like protein, α/ß superfamily hydrolases/acyltransferases, and glutathione disulfide reductases. ROS production in S. suis positively correlated with AgNP concentration. Conclusion: The potential antibacterial mechanism of AgNPs may involve disrupting the normal morphology of bacteria by inhibiting the synthesis of cell wall peptidoglycans and inhibiting the growth of bacteria by inhibiting the cell division protein FtsZ and Chromosomal replication initiator protein DnaA. High oxidative stress may be a significant cause of bacterial death. The potential mechanism by which AgNPs inhibit S. suis biofilm formation may involve affecting bacterial adhesion and interfering with the quorum sensing system.

13.
PLoS Biol ; 21(9): e3002285, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733785

RESUMO

The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.


Assuntos
Aldeído Liases , Carbono , Acetilcoenzima A , Carbono/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Glucose/metabolismo , Engenharia Metabólica
14.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402365

RESUMO

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Assuntos
Proteínas Nucleares , Síndrome de Sotos , Animais , Humanos , Proteínas Nucleares/metabolismo , Cromatina , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Histona Metiltransferases/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Mamíferos/metabolismo , Histona-Lisina N-Metiltransferase/genética
15.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398096

RESUMO

The mechanisms underlying the ability of embryonic stem cells (ESCs) to rapidly activate lineage-specific genes during differentiation remain largely unknown. Through multiple CRISPR-activation screens, we discovered human ESCs have pre-established transcriptionally competent chromatin regions (CCRs) that support lineage-specific gene expression at levels comparable to differentiated cells. CCRs reside in the same topological domains as their target genes. They lack typical enhancer-associated histone modifications but show enriched occupancy of pluripotent transcription factors, DNA demethylation factors, and histone deacetylases. TET1 and QSER1 protect CCRs from excessive DNA methylation, while HDAC1 family members prevent premature activation. This "push and pull" feature resembles bivalent domains at developmental gene promoters but involves distinct molecular mechanisms. Our study provides new insights into pluripotency regulation and cellular plasticity in development and disease. One sentence summary: We report a class of distal regulatory regions distinct from enhancers that confer human embryonic stem cells with the competence to rapidly activate the expression of lineage-specific genes.

16.
J Cell Physiol ; 238(8): 1909-1920, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357506

RESUMO

Human embryonic stem cells (hESCs) have great potential for developmental biology and regenerative medicine. However, extensive apoptosis often occurs when hESCs respond to various stresses or injuries. Understanding the molecular control and identifying new factors associated with hESC survival are fundamental to ensure the high quality of hESCs. In this study, we report that PRPF8, an RNA spliceosome component, is essential for hESC survival. PRPF8 knockdown (KD) induces p53 protein accumulation and activates the p53 pathway, leading to apoptosis in hESCs. Strikingly, silencing of p53 rescues PRPF8 KD-induced apoptosis, indicating that PRPF8 KD triggers hESC apoptosis through activating the p53 pathway. In search for the mechanism by which p53 pathway is activated by PRPF8 KD, we find that PRPF8 KD alters alternative splicing of many genes, including PIRH2 which encodes an E3 ubiquitin ligase of p53. PIRH2 has several isoforms such as PIRH2A, PIRH2B, and PIRH2C. Intriguingly, PRPF8 KD specifically increases the transcript level of the PIRH2B isoform, which lacks a RING domain and E3 ligase activity. Functionally, PIRH2B KD partially rescues the reduction in cell numbers and upregulation of P21 caused by PRPF8 KD in hESCs. The finding suggests that PRPF8 controls alternative splicing of PIRH2 to maintain the balance of p53 pathway activity and survival of hESCs. The PRPF8/PIRH2/p53 axis identified here provides new insights into how p53 pathway and hESC survival are precisely regulated at multiple layers, highlighting an important role of posttranscriptional machinery in supporting hESC survival.


Assuntos
Processamento Alternativo , Proteína Supressora de Tumor p53 , Humanos , Processamento Alternativo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205540

RESUMO

Pluripotent stem cells are defined by both the ability to unlimitedly self-renew and differentiate to any somatic cell lineage, but understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. We performed four parallel genome-scale CRISPR-Cas9 screens to investigate the interplay between these two aspects of pluripotency. Our comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including many mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control stem cell identity. We further discovered a core set of factors that control both stem cell fitness and pluripotency identity, including an interconnected network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus self-renewal, and offer a valuable model for categorizing gene function in broad biological contexts.

18.
Environ Pollut ; 290: 117949, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438166

RESUMO

The domestic combustion of smoky (bituminous) coal in the Chinese counties of Xuanwei and Fuyuan, are responsible for some of the highest rates of lung cancer in the world. Cancer rates vary between coal producing regions (deposits) in the area, with coals from Laibin exhibiting particularly high risks and smokeless (anthracite) coal exhibiting lower risks. However, little information is available on the specific burning characteristics of coals from throughout the area. We conducted an extensive controlled burning experiment using coal from multiple deposits in either a traditional firepit or ventilated stove, accompanied by a detailed examination of time-weighted and real-time size-aggregated particle concentrations. Smoky coal caused higher particle concentrations of all sizes than smokeless coal, with variations observed by geological source. Virtually all particle emissions were in the PM2.5 fraction (98% - mass based), and 75% and 46% were in the PM1 and PM0.3 fraction respectively. Real-time concentrations of PM1 and PM0.1 peaked after coal was added and declined afterwards. Ventilation reduced particle concentrations by up to 15-fold and increased the coal burning rate by 1.9-fold. These findings may provide valuable insight for reducing exposure and adverse health effects associated with domestic coal combustion.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , China , Carvão Mineral/análise , Culinária
19.
ACS Synth Biol ; 10(7): 1574-1586, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34129323

RESUMO

Adaptive laboratory evolution (ALE) is a widely used and highly effective tool for improving microbial phenotypes and investigating the evolutionary roots of biological phenomena. Serving as the raw materials of evolution, mutations have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. The generation of genetic diversity is therefore a core technology for accelerating ALE, and a high-quality mutant library is crucial to its success. Because of its importance, technologies for generating genetic diversity have undergone rapid development in recent years. Here, we review the existing techniques for the construction of mutant libraries, briefly introduce their mechanisms and applications, discuss ongoing and emerging efforts to apply engineering technologies in the construction of mutant libraries, and suggest future perspectives for library construction.


Assuntos
Adaptação Fisiológica , Variação Genética , Microbiota , Mutagênese
20.
Mol Plant ; 14(7): 1199-1209, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951484

RESUMO

Taxus, commonly known as yew, is a well-known gymnosperm with great ornamental and medicinal value. In this study, by assembling a chromosome-level genome of the Himalayan yew (Taxus wallichiana) with 10.9 Gb in 12 chromosomes, we revealed that tandem duplication acts as the driving force of gene family evolution in the yew genome, resulting in the main genes for paclitaxel biosynthesis, i.e. those encoding the taxadiene synthase, P450s, and transferases, being clustered on the same chromosome. The tandem duplication may also provide genetic resources for the nature to sculpt the core structure of taxoids at different positions and subsequently establish the complex pathway of paclitaxel by neofunctionalization. Furthermore, we confirmed that there are two genes in the cluster encoding isoenzymes of a known enzyme in the paclitaxel biosynthetic pathway. The reference genome of the Himalayan yew will serve as a platform for decoding the complete biosynthetic pathway of paclitaxel and understanding the chemodiversity of taxoids in gymnosperms.


Assuntos
Genoma de Planta , Paclitaxel/biossíntese , Taxus/genética , Cromossomos de Plantas , Evolução Molecular , Duplicação Gênica , Taxoides , Taxus/metabolismo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA