Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 96: 103192, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810516

RESUMO

Methods to detect malignant lesions from screening mammograms are usually trained with fully annotated datasets, where images are labelled with the localisation and classification of cancerous lesions. However, real-world screening mammogram datasets commonly have a subset that is fully annotated and another subset that is weakly annotated with just the global classification (i.e., without lesion localisation). Given the large size of such datasets, researchers usually face a dilemma with the weakly annotated subset: to not use it or to fully annotate it. The first option will reduce detection accuracy because it does not use the whole dataset, and the second option is too expensive given that the annotation needs to be done by expert radiologists. In this paper, we propose a middle-ground solution for the dilemma, which is to formulate the training as a weakly- and semi-supervised learning problem that we refer to as malignant breast lesion detection with incomplete annotations. To address this problem, our new method comprises two stages, namely: (1) pre-training a multi-view mammogram classifier with weak supervision from the whole dataset, and (2) extending the trained classifier to become a multi-view detector that is trained with semi-supervised student-teacher learning, where the training set contains fully and weakly-annotated mammograms. We provide extensive detection results on two real-world screening mammogram datasets containing incomplete annotations and show that our proposed approach achieves state-of-the-art results in the detection of malignant breast lesions with incomplete annotations.


Assuntos
Neoplasias da Mama , Mamografia , Interpretação de Imagem Radiográfica Assistida por Computador , Humanos , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Feminino , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina Supervisionado
2.
IEEE Trans Med Imaging ; 43(1): 392-404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603481

RESUMO

The deployment of automated deep-learning classifiers in clinical practice has the potential to streamline the diagnosis process and improve the diagnosis accuracy, but the acceptance of those classifiers relies on both their accuracy and interpretability. In general, accurate deep-learning classifiers provide little model interpretability, while interpretable models do not have competitive classification accuracy. In this paper, we introduce a new deep-learning diagnosis framework, called InterNRL, that is designed to be highly accurate and interpretable. InterNRL consists of a student-teacher framework, where the student model is an interpretable prototype-based classifier (ProtoPNet) and the teacher is an accurate global image classifier (GlobalNet). The two classifiers are mutually optimised with a novel reciprocal learning paradigm in which the student ProtoPNet learns from optimal pseudo labels produced by the teacher GlobalNet, while GlobalNet learns from ProtoPNet's classification performance and pseudo labels. This reciprocal learning paradigm enables InterNRL to be flexibly optimised under both fully- and semi-supervised learning scenarios, reaching state-of-the-art classification performance in both scenarios for the tasks of breast cancer and retinal disease diagnosis. Moreover, relying on weakly-labelled training images, InterNRL also achieves superior breast cancer localisation and brain tumour segmentation results than other competing methods.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Doenças Retinianas , Humanos , Feminino , Retina , Aprendizado de Máquina Supervisionado
3.
Med Image Anal ; 90: 102930, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657364

RESUMO

Unsupervised anomaly detection (UAD) methods are trained with normal (or healthy) images only, but during testing, they are able to classify normal and abnormal (or disease) images. UAD is an important medical image analysis (MIA) method to be applied in disease screening problems because the training sets available for those problems usually contain only normal images. However, the exclusive reliance on normal images may result in the learning of ineffective low-dimensional image representations that are not sensitive enough to detect and segment unseen abnormal lesions of varying size, appearance, and shape. Pre-training UAD methods with self-supervised learning, based on computer vision techniques, can mitigate this challenge, but they are sub-optimal because they do not explore domain knowledge for designing the pretext tasks, and their contrastive learning losses do not try to cluster the normal training images, which may result in a sparse distribution of normal images that is ineffective for anomaly detection. In this paper, we propose a new self-supervised pre-training method for MIA UAD applications, named Pseudo Multi-class Strong Augmentation via Contrastive Learning (PMSACL). PMSACL consists of a novel optimisation method that contrasts a normal image class from multiple pseudo classes of synthesised abnormal images, with each class enforced to form a dense cluster in the feature space. In the experiments, we show that our PMSACL pre-training improves the accuracy of SOTA UAD methods on many MIA benchmarks using colonoscopy, fundus screening and Covid-19 Chest X-ray datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA