Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542907

RESUMO

Although laser technology brings convenience to production and daily life, it also causes high-energy damage. Therefore, there is an urgent need to develop optical limiting materials for laser protection. In this study, a novel nonlinear optical material, red/black phosphorus lateral heterojunction, is successfully prepared through solvothermal and ultrasonic treatment. Using the Z-scan method, the nonlinear optical properties of the red/black phosphorus heterojunction are determined at wavelengths of 532 and 1064 nm. These results indicate that the red/black phosphorus heterojunction exhibits reverse saturable absorption properties in 1.2.3-glycerol. Interestingly, the red/black phosphorus heterojunction shows an enhanced performance over red phosphorus by introducing the black phosphorus phase. Moreover, the red/black phosphorus heterojunction is doped into organically modified silicate gel glass with excellent broadband optical limiting performance. This study highlights the promising prospect of the red/black phosphorus heterojunction in the nonlinear optical and optical limiting fields.

2.
Sci Total Environ ; 925: 171731, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492602

RESUMO

Intercropping legume with grass has potential to increase biomass and protein yield via biological N2-fixation (BNF) benefits, whereas the joint effects of biochar (BC) coupled with deficit irrigation on intercropping systems remain elusive. A 15N isotope-labelled experiment was implemented to investigate morpho-physiological responses of faba bean-ryegrass intercrops on low- (550 °C, LTBC) or high-temperature BC (800 °C, HTBC) amended sandy-loam soil under full (FI), deficit (DI) and partial root-zone drying irrigation (PRD). LTBC and HTBC significantly reduced intrinsic water-use efficiency (WUE) by 12 and 14 %, and instantaneous WUE by 8 and 16 %, respectively, in faba bean leaves, despite improved photosynthetic (An) and transpiration rate (Tr), and stomatal conductance (gs). Compared to FI, DI and PRD lowered faba bean An, gs and Tr, but enhanced leaf-scale and time-integrated WUE as proxied by the diminished shoots Δ13C. PRD enhanced WUE as lower gs, Tr and guard cell length than DI-plants. Despite higher carbon ([C]) and N concentration ([N]) in faba bean shoots amended by BC, the aboveground C- and N-pool of faba bean were reduced, while these pools increased for ryegrass. The N-use efficiency (NUE) in faba bean shoots was reduced by 9 and 14 % for LTBC and HTBC, respectively, but not for ryegrass. Interestingly, ryegrass shoots had 52 % higher NUE than faba bean shoots. The N derived from atmosphere (% Ndfa) was increased by 2 and 9 % under LTBC and HTBC, respectively, while it decreased slightly by reduced irrigation. Quantity of BNF in faba bean aboveground biomass decreased with HTBC coupled with reduced irrigation, mainly towards decreased biomass and soil N uptake by faba bean. Therefore, HTBC might not be a feasible option to improve WUE and BNF in faba bean-ryegrass intercropping, but PRD is permissible as the clear trade-off between BC and PRD.


Assuntos
Carvão Vegetal , Lolium , Vicia faba , Fixação de Nitrogênio , Folhas de Planta/fisiologia , Solo
3.
Angew Chem Int Ed Engl ; 63(16): e202401255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38298118

RESUMO

Polylactic acid (PLA) has attracted increasing interest as a sustainable plastic because it can be degraded into CO2 and H2O in nature. However, this process is sluggish, and even worse, it is a CO2-emitting and carbon resource waste process. Therefore, it is highly urgent to develop a novel strategy for recycling post-consumer PLA to achieve a circular plastic economy. Herein, we report a one-pot photoreforming route for the efficient and selective amination of PLA waste into value-added alanine using CoP/CdS catalysts under mild conditions. Results show the alanine production rate can reach up to 2.4 mmol gcat -1 h-1, with a high selectivity (>75 %) and excellent stability. Time-resolved transient absorption spectra (TAS) reveal that CoP can rapidly extract photogenerated electrons from CdS to accelerate proton reduction, favoring hole-dominated PLA oxidation to coproduce alanine. This study offers an appealing way for upcycling PLA waste and creates new opportunities for green synthesis of amino acids.

4.
Carbohydr Polym ; 321: 121336, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739487

RESUMO

Raw starch is commonly modified to enhance its functionality for industrial applications. There is increasing demand for 'green' modified starches from both end-consumers and producers. It is well known that environmental conditions are key factors that determine plant growth and yield. An increasing number of studies suggest growth conditions can expand affect starch structure and functionality. In this review, we summarized how water, heat, high nitrogen, salinity, shading, CO2 stress affect starch biosynthesis and physicochemical properties. We define these treatments as a fifth type of starch modification method - agricultural modification - in addition to chemical, physical, enzymatic and genetic methods. In general, water stress decreases peak viscosity and gelatinization enthalpy of starch, and high temperature stress increases starch gelatinization enthalpy and temperature. High nitrogen increases total starch content and regulates starch viscosity. Salinity stress mainly regulates starch and amylose content, both of which are genotype-dependent. Shading stress and CO2 stress can both increase starch granule size, but these have different effects on amylose content and amylopectin structure. Compared with other modification methods, agricultural modification has the advantage of operating at a large scale and a low cost and can help meet the ever-rising market of clean-label foods and ingredients.


Assuntos
Amilose , Amido , Dióxido de Carbono , Amilopectina , Nitrogênio
5.
Sci Total Environ ; 904: 166978, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37704141

RESUMO

An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.


Assuntos
Gossypium , Água , Cloreto de Sódio , Sódio , Íons , Tolerância ao Sal
6.
J Exp Bot ; 74(18): 5931-5946, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37540146

RESUMO

Increasing atmospheric CO2 concentrations accompanied by intensifying drought markedly impact plant growth and physiology. This study aimed to explore the role of abscisic acid (ABA) in mediating the response of stomata to elevated CO2 (e[CO2]) and drought. Tomato plants with different endogenous ABA concentrations [Ailsa Craig (AC), the ABA-deficient mutant flacca, and ABA-overproducing transgenic tomato SP5] were grown in ambient (a[CO2], 400 µmol mol-1) and elevated (e[CO2],800 µmol mol-1) CO2 environments and subjected to progressive soil drying. Compared with a[CO2] plants, e[CO2] plants had significantly lower stomatal conductance in AC and SP5 but not in flacca. Under drought, e[CO2] plants had better water status and higher water use efficiency. e[CO2] promoted the accumulation of ABA in leaves of plants subjected to drought, which coincided with the up-regulation of ABA biosynthetic genes and down-regulation of ABA metabolic genes. Although the increase of ABA induced by drought in flacca was much less than in AC and SP5, flacca accumulated large amounts of ethylene, suggesting that in plants with ABA deficiency, ethylene might play a compensatory role in inducing stomatal closure during soil drying. Collectively, these findings improve our understanding of plant performance in a future drier and higher-CO2 environment.

7.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511108

RESUMO

Abscisic acid (ABA) plays a vital role in the induction of low temperature tolerance in plants. To understand the molecular basis of this phenomenon, we performed a proteomic analysis on an ABA-deficit mutant barley (Az34) and its wild type (cv Steptoe) under control conditions (25/18 °C) and after exposure to 0 °C for 24 h. Most of the differentially abundant proteins were involved in the processes of photosynthesis and metabolisms of starch, sucrose, carbon, and glutathione. The chloroplasts in Az34 leaves were more severely damaged, and the decrease in Fv/Fm was larger in Az34 plants compared with WT under low temperature. Under low temperature, Az34 plants possessed significantly higher activities of ADP-glucose pyrophosphorylase, fructokinase, monodehydroascorbate reductase, and three invertases, but lower UDP-glucose pyrophosphorylase activity than WT. In addition, concentrations of proline and soluble protein were lower, while concentration of H2O2 was higher in Az34 plants compared to WT under low temperature. Collectively, the results indicated that ABA deficiency induced modifications in starch and sucrose biosynthesis and sucrolytic pathway and overaccumulation of reactive oxygen species were the main reason for depressed low temperature tolerance in barley, which provide novel insights to the response of barley to low temperature under future climate change.


Assuntos
Ácido Abscísico , Hordeum , Ácido Abscísico/metabolismo , Hordeum/metabolismo , Proteômica , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Amido/metabolismo , Sacarose/metabolismo , Oxirredução , Homeostase , Regulação da Expressão Gênica de Plantas
9.
Materials (Basel) ; 16(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902954

RESUMO

Revealing the turbulent drag reduction mechanism of water flow on microstructured surfaces is beneficial to controlling and using this technology to reduce turbulence losses and save energy during water transportation. Two microstructured samples, including a superhydrophobic and a riblet surface, were fabricated near which the water flow velocity, and the Reynolds shear stress and vortex distribution were investigated using a particle image velocimetry. The dimensionless velocity was introduced to simplify the Ω vortex method. The definition of vortex density in water flow was proposed to quantify the distribution of different strength vortices. Results showed that the velocity of the superhydrophobic surface (SHS) was higher compared with the riblet surface (RS), while the Reynolds shear stress was small. The vortices on microstructured surfaces were weakened within 0.2 times that of water depth when identified by the improved ΩM method. Meanwhile, the vortex density of weak vortices on microstructured surfaces increased, while the vortex density of strong vortices decreased, proving that the reduction mechanism of turbulence resistance on microstructured surfaces was to suppress the development of vortices. When the Reynolds number ranged from 85,900 to 137,440, the drag reduction impact of the superhydrophobic surface was the best, and the drag reduction rate was 9.48%. The reduction mechanism of turbulence resistance on microstructured surfaces was revealed from a novel perspective of vortex distributions and densities. Research on the structure of water flow near the microstructured surface can promote the drag reduction application in the water field.

10.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903754

RESUMO

Riblet and superhydrophobic surfaces are two typical passive control technologies used to save energy. In this study, three microstructured samples-a micro-riblet surface (RS), a superhydrophobic surface (SHS), and a novel composite surface of micro-riblets with superhydrophobicity (RSHS)-were designed to improve the drag reduction rate of water flows. Aspects of the flow fields of microstructured samples, including the average velocity, turbulence intensity, and coherent structures of water flows, were investigated via particle image velocimetry (PIV) technology. A two-point spatial correlation analysis was used to explore the influence of the microstructured surfaces on coherent structures of water flows. Our results showed that the velocity on microstructured surface samples was higher than that on the smooth surface (SS) samples, and the turbulence intensity of water on the microstructured surface samples decreased compared with that on the SS samples. The coherent structures of the water flow on microstructured samples were restricted by length and structural angles. The drag reduction rates of the SHS, RS, and RSHS samples were -8.37 %, -9.67 %, and -17.39 %, respectively. The novel established RSHS demonstrated a superior drag reduction effect and could improve the drag reduction rate of water flows.

11.
Plants (Basel) ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771521

RESUMO

Three genotypes of wheat grown at two CO2 concentrations were used in a drought experiment, where water was withheld from the pots at anthesis until stomatal conductance (gs) dropped below 10% of the control and photosynthesis (A) approached zero. The genotypes had different leaf area (Gladius < LM19 < LM62) and while photosynthesis and shoot growth were boosted by elevated CO2, the water use and drying rate were more determined by canopy size than by stomatal density and conductance. The genotypes responded differently regarding number of fertile tillers, seeds per spike and 1000 kernel weight and, surprisingly, the largest genotype (LM62) with high water use showed the lowest relative decrease in grain yield. The maximum photochemical efficiency of photosystem II (Fv/Fm) was only affected on the last day of the drought when the stomata were almost closed although some variation in A was still seen between the genotypes. A close correlation was found between Fv/Fm and % loss of grain yield. It indicates that the precise final physiological stress level measured by Fv/Fm at anthesis/early kernel filling could effectively predict percentage final yield loss, and LM62 was slightly less stressed than the other genotypes, due to only a small discrepancy in finalising the drying period. Therefore, Fv/Fm can be used as a proxy for estimating the yield performance of wheat after severe drought at anthesis.

12.
Plants (Basel) ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771756

RESUMO

The effects of inoculating plant growth promoting rhizobacteria (PGPR) and soil water deficits on crop growth and physiology remain largely unknown. Here, the responses of leaf gas exchange, growth, and water use efficiency (WUE) of tomato plants to Bacillus pumilus (B.p.) inoculation under four irrigation strategies (I1-I4) were investigated in a greenhouse. Results showed that soil water deficits, especially at I4 (20%, v/v), significantly decreased leaf stomatal conductance (gs), transpiration rate (Tr), and photosynthetic rate (An), and the decrease of gs and Tr were more pronounced than An. Reduced irrigation regimes significantly lowered dry matter and plant water use both in the non-B.p. control and the B.p. plants, while reduced irrigation significantly increased plant WUE, and B.p. inoculation had little effect on this parameter. Synergistic effects of PGPR and deficit irrigation on leaf gas exchange, leaf abscisic acid content, and stomatal density were found in this study, and specifically, B.p. treated plants at I4 possessed the highest WUE at stomatal and leaf scales, suggesting that B.p. inoculation could optimize water use and partly alleviate the negative effects of soil water deficit. These findings provide useful information for effective irrigation management and the application of PGPR in agriculture in the future.

13.
Front Plant Sci ; 14: 1122742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743482

RESUMO

Introduction: Biochar amendment provides multiple benefits in enhancing crop productivity and soil nutrient availability. However, whether biochar addition affects root morphology and alters plant nutrient uptake and shoot growth under different irrigation regimes remain largely unknown. Methods: A split-root pot experiment with maize (Zea mays L.) was conducted on clay loam soil mixed with 2% (w/w) of wheat-straw (WSP) and softwood (SWP) biochar. The plants were subjected to full (FI), deficit (DI), and alternate partial root-zone drying (PRD) irrigation from the fourth leaf to the grain-filling stage. Results and discussion: The results showed that, compared to plants grown in unamended soils, plants grown in the biochar-amended soils possessed greater total root length, area, diameter, volume, tips, forks, crossings, and root length density, which were further amplified by PRD. Despite a negative effect on soil available phosphorus (P) pool, WSP addition improved soil available nitrogen (N), potassium (K), and calcium (Ca) pool and cation exchange capacity under reduced irrigation. Even though biochar negatively affected nutrient concentrations in shoots as exemplified by lowered N, P, K (except leaf), and Ca concentration, it dramatically enhanced plant total N, P, K, Ca uptake, and biomass. Principal component analysis (PCA) revealed that the modified root morphology and increased soil available nutrient pools, and consequently, the higher plant total nutrient uptake might have facilitated the enhanced shoot growth and yield of maize plants in biochar-added soils. Biochar amendment further lowered specific leaf area but increased leaf N concentration per area-to-root N concentration per length ratio. All these effects were evident upon WSP amendment. Moreover, PRD outperformed DI in increasing root area-to-leaf area ratio. Overall, these findings suggest that WSP combined with PRD could be a promising strategy to improve the growth and nutrient uptake of maize plants.

14.
Sci Total Environ ; 866: 161420, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621484

RESUMO

Polystyrene plastics is an emerging pollutant affecting plant performance and soil functioning. However, little information is available on the effects of microplastics and nanoplastics on plant root endophytic and rhizospheric soil microbial communities. Here, barley plants were grown in microplastics/nanoplastics -treated soil and the diversity, composition and function of bacteria and fungi in the root and rhizosphere soil were examined. At the seedling stage, greater changes of root endophytes were found compared with rhizosphere microorganisms under the plastic treatments. Nanoplastics decreased the richness and diversity of the fungal community, while microplastics increased the diversity of the root endophytic bacterial community. The network of the bacterial community under nanoplastics showed higher vulnerability while lower complexity than that under the control. However, the bacterial community under microplastics had a relatively higher resistance than the control. For the rhizosphere microbial community, no significant effect of plastics was found on the α-diversity index at the seedling stage. In addition, the nanoplastics resulted in higher sensitivity in the relative abundance and function of rhizosphere soil microbes than root endophytic microbes at the mature stage. Treatments of polystyrene plastics with different particle sizes reprogramed the rhizosphere and root endophytic microbial communities. Different effects of microplastics and nanoplastics were found on the diversity, composition, network structure and function of bacteria and fungi, which might be due to the variation in particle sizes. These results lay a foundation for learning the effects of polystyrene plastics with different particle sizes on the microorganisms in rhizosphere soil and plant roots, which may have important implications for the adaptation of plant-microbial holobiont in polystyrene plastics-polluted soils.


Assuntos
Hordeum , Microbiota , Solo/química , Plásticos , Poliestirenos , Microplásticos , Rizosfera , Tamanho da Partícula , Bactérias , Plantas , Fungos , Microbiologia do Solo , Raízes de Plantas/microbiologia
15.
Angew Chem Int Ed Engl ; 62(11): e202300094, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656087

RESUMO

Electro-reforming of Polyethylene-terephthalate-derived (PET-derived) ethylene glycol (EG) into fine chemicals and H2 is an ideal solution to address severe plastic pollution. Here, we report the electrooxidation of EG to glycolic acid (GA) with a high Faraday efficiency and selectivity (>85 %) even at an industry-level current density (600 mA cm-2 at 1.15 V vs. RHE) over a Pd-Ni(OH)2 catalyst. Notably, stable electrolysis over 200 h can be achieved, outperforming all available Pd-based catalysts. Combined experimental and theoretical results reveal that 1) the OH* generation promoted by Ni(OH)2 plays a critical role in facilitating EG-to-GA oxidation and removing poisonous carbonyl species, thereby achieving high activity and stability; 2) Pd with a downshifted d-band center and the oxophilic Ni can synergistically facilitate the rapid desorption and transfer of GA from the active Pd sites to the inactive Ni sites, avoiding over-oxidation and thus achieving high selectivity.

16.
Front Plant Sci ; 13: 953712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466229

RESUMO

Global rising atmospheric CO2 concentration ([CO2]) and drought stress exert profound influences on crop growth and yield. The objective of the present study was to investigate the responses of leaf gas exchange and plant water use efficiency (WUE) of wheat (C3) and maize (C4) plants to progressive drought stress under ambient (a[CO2], 400 ppm) and elevated (e[CO2], 800 ppm) atmospheric CO2 concentrations. The fraction of transpirable soil water (FTSW) was used to evaluate soil water status in the pots. Under non-drought stress, e[CO2] increased the net photosynthetic rate (An) solely in wheat, and dry matter accumulation (DMA), whereas it decreased stomatal conductance (g s) and water consumption (WC), resulting in enhanced WUE by 27.82% for maize and 49.86% for wheat. After onset of progressive soil drying, maize plants in e[CO2] showed lower FTSW thresholds than wheat, at which e.g. gs (0.31 vs 0.40) and leaf relative water content (0.21 vs 0.43) starts to decrease, indicating e[CO2] conferred a greater drought resistance in maize. Under the combination of e[CO2] and drought stress, enhanced WUE was solely found in wheat, which is mainly associated with increased DMA and unaffected WC. These varied responses of leaf gas exchange and WUE between the two species to combined drought and e[CO2] suggest that specific water management strategies should be developed to optimize crop WUE for different species in a future drier and CO2-enriched environment.

17.
Plants (Basel) ; 11(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365460

RESUMO

Deficit irrigation (DI) was acknowledged as an effective technique to improve water use efficiency (WUE) without significant yield reduction. In this study, a 3-year field experiment was conducted in Northeast China during 2017-2019 to investigate the combined effects of 3-week DI from 3-leaf stage and N fertilization on maize seedling growth and determine the resulting impacts on silking growth and yield formation, N use efficiency (NUE) and WUE. Results showed that seedling-stage DI decreased leaf area and photosynthesis, thus significantly limited shoot and root dry biomass for maize seedling, compared to well-watered (WW) plants. In 2017 and 2019, seedling-stage DI positively improved seedling growth with higher root: shoot ratio and enhanced drought tolerance, under higher initial soil water contents (SWC) with sufficient precipitation before DI. The DI-primed plants showed similar or better performances on reproductive growth, grain yield, WUE and NUE compared to WW plants, even experiencing heavy rainfall or drought stresses around the silking stage. However, the contrasting results were observed in 2018 with negative DI effects on seedling and silking growth and final yield, probably due to less rainfall and lower SWC before DI. In all 3 years, N fertilization had significant compensatory effects on limited seedling growth under DI, and its effect was much less in 2018 than other years due to adverse early climate. The principal component and correlation analysis revealed maize silking growth, grain yield, NUE and WUE were strongly related to the seedling growth as affected by water and N managements under various climatic conditions. In conclusion, a short-term and moderate DI regime-adopted at the seedling stage under higher initial SWC and coupled with an appropriate N fertilization-is beneficial to control redundant vegetative growth while optimizing root development, therefore effectively improving drought tolerance for maize plants and achieving higher grain yield, WUE and NUE.

18.
Front Plant Sci ; 13: 998861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275608

RESUMO

Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and functioning of fungi and bacteria in rhizosphere of barley under low temperature. The results showed that rhizospheric melatonin application positively regulated the photosynthetic carbon assimilation and redox homeostasis in barley in response to low temperature. These effects might be associated with an altered diversity of microbial community in rhizosphere, especially the species and relative abundance of nitrogen cycling related microorganisms, as exemplified by the changes in rhizosphere metabolites in the pathways of amino acid synthesis and metabolism. Collectively, it was suggested that the altered rhizospheric microbial status upon melatonin application was associated with the response of barley to low temperature. This suggested that the melatonin induced microbial changes should be considered for its application in the crop cold-resistant cultivation.

19.
Funct Plant Biol ; 49(11): 946-957, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35871526

RESUMO

Low temperature is one of the major environmental stresses that limit crop growth and grain yield in wheat (Triticum aestivum L.). Drought priming at the vegetative stage could enhance wheat tolerance to later cold stress; however, the transgenerational effects of drought priming on wheat offspring's cold stress tolerance remains unclear. Here, the low temperature responses of offspring were tested after the parental drought priming treatment at grain filling stage. The offspring plants from parental drought priming treatment had a higher abscisic acid (ABA) level and lower osmotic potential (Ψo) than the control plants under cold conditions. Moreover, parental drought priming increased the antioxidant enzyme activities and decreased hydrogen peroxide (H2 O2 ) accumulation in offspring. In comparison to control plants, parental drought priming plants had a higher ATP concentration and higher activities of ATPase and the enzymes involved in sucrose biosynthesis and starch metabolism. The results indicated that parental drought priming induced low temperature tolerance in offspring by regulating endogenous ABA levels and maintaining the redox homeostasis and the balance of carbohydrate metabolism, which provided a potential approach for cold resistant cultivation in wheat.


Assuntos
Secas , Triticum , Ácido Abscísico/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Resposta ao Choque Frio , Peróxido de Hidrogênio/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Temperatura
20.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567127

RESUMO

Drought stress often occurs concurrently with heat stress, yet the interacting effect of high vapor pressure deficit (VPD) and soil drying on the physiology of potato plants remains poorly understood. This study aimed to investigate the physiological and growth responses of potatoes to progressive soil drying under varied VPDs. Potato plants were grown either in four separate climate-controlled greenhouse cells with different VPD levels (viz., 0.70, 1.06, 1.40, and 2.12 kPa, respectively) or under a rainout shelter in the field. The VPD of each greenhouse cell was caused by two air temperature levels (23 and 30 °C) combined with two relative humidity levels (50 and 70%), and the VPD of the field was natural conditions. Irrigation treatments were commenced three or four weeks after planting in greenhouse cells or fields, respectively. The results indicated that soil water deficits limited leaf gas exchange and shoot dry matter (DMshoot) of plants while increasing the concentration of abscisic acid (ABA) in the leaf and xylem, as well as water use efficiency (WUE) across all VPD levels. High VPD decreased stomatal conductance (gs) but increased transpiration rate (Tr). High VPD increased the threshold of soil water for Tr began to decrease, while the soil water threshold for gs depended on temperature due to the varied ABA response to temperature. High VPD decreased leaf water potential, leaf area, and DMshoot, which exacerbated the inhibition of soil drying to plant growth. Across the well-watered plants in both experiments, negative linear relationships of gs and WUE to VPD and positive linear relations between Tr and VPD were found. The results provide some novel information for developing mechanistic models simulating crop WUE and improving irrigation scheduling in future arid climates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA