Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37487806

RESUMO

Avermectin, a widely used insecticide, is primarily effective against animal parasites and insects. Given its extensive application in agriculture, a large amount of avermectin accumulates in natural water bodies. Studies have shown that avermectin has significant toxic effects on various organisms and on the nervous system, spine, and several other organs in humans. However, the effects of avermectin on bone development have not been reported yet. In this study, zebrafish embryos were treated with different concentrations of avermectin to explore the effects of avermectin on early bone development. The results showed that avermectin disturbed early bone development in zebrafish, caused abnormal craniofacial chondrogenesis, and reduced bone mineralization. Avermectin treatment significantly reduced mineralization in zebrafish scales and increased osteoclast activity. Real-time quantitative PCR results showed that avermectin decreased the expression of genes related to osteogenesis and transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signaling pathways. The TGF-ß inhibitor SB431542 rescued avermectin-induced bone mineralization and osteogenesis related gene expression in zebrafish during early development. Thus, this study provides insight into the mechanism of damage caused by avermectin on bone development, thus helping demonstrate its toxicity.


Assuntos
Calcificação Fisiológica , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Transdução de Sinais
2.
Small ; 19(45): e2303456, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37438648

RESUMO

The pathogenesis of postmenopausal osteoporosis (PMOP) is mainly determined by the adhesion of osteoclasts to the bone matrix and the involvement of various molecules in bone resorption. The dual regulation strategy of the physical barriers of bone matrix and intracellular gene regulation generated by advanced biomaterials is a decent alternative for the treatment of PMOP. Herein, for the first time, it is identified that hsa-miR-378i/mmu-miR-378a-3p are closely associated with PMOP. Then, an osteophilic and dual-regulated alendronate-gene lipoplex (antagomir@Aln-Lipo), composed of medicative alendronate-functionalized liposomal vehicle and encapsulated specific microRNAs is engineered, for bone-targeting delivery of genes to achieve combined mitigation of bone loss. Alendronate targets hydroxyapatite in the bone matrix and occupies the adhesion site of osteoclasts, thus providing the "physical barriers". Antagomir is coupled precisely to specific endogenous microRNAs, thus providing the "genetic signals". These functionalized lipoplexes exhibited long-term stability and good transfection efficiency. It is proven that antagomir@Aln-Lipo could synergistically regulate osteoclastogenesis and bone resorption in vitro and in vivo. Furthermore, intravenous injection of antagomir@Aln-Lipo efficiently reverses bone loss through a dual mechanism driven by alendronate and antagomir-378a-3p. In conclusion, the osteophilic and dual-regulated antagomir@Aln-Lipo offers a brand-new bifunctional strategy for the precise treatment of PMOP.


Assuntos
Reabsorção Óssea , MicroRNAs , Humanos , Alendronato , Antagomirs , Osso e Ossos/patologia , MicroRNAs/genética
3.
Adv Sci (Weinh) ; 10(15): e2207381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967561

RESUMO

Postmenopausal osteoporosis is one of the most prevalent skeletal disorders in women and is featured by the imbalance between intraosseous vascularization and bone metabolism. In this study, a pH-responsive shell-core structured micro/nano-hydrogel microspheres loaded with polyhedral oligomeric silsesquioxane (POSS) using gas microfluidics and ionic cross-linking technology are developed. This micro/nano-hydrogel microsphere system (PDAP@Alg/Cs) can achieve oral delivery, intragastric protection, intestinal slow/controlled release, active targeting to bone tissue, and thus negatively affecting intraosseous angiogenesis and osteoclastogenesis. According to biodistribution data, PDAP@Alg/Cs can successfully enhance drug intestinal absorption and bioavailability through intestine adhesion and bone targeting after oral administration. In vitro and in vivo experiments reveal that PDAP@Alg/Cs promoted type H vessel formation and inhibited bone resorption, effectively mitigating bone loss by activating HIF-1α/VEGF signaling pathway and promoting heme oxygenase-1 (HO-1) expression. In conclusion, this novel oral micro/nano-hydrogel microsphere system can simultaneously accelerate intraosseous vascularization and decrease bone resorption, offering a brand-new approach to prevent postmenopausal osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Feminino , Humanos , Hidrogéis , Microesferas , Distribuição Tecidual , Osso e Ossos
4.
Free Radic Biol Med ; 198: 123-136, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738798

RESUMO

Excess iron accumulation is a risk factor for osteopenia and osteoporosis, and ferroptosis is becoming well understood as iron-dependent form of cell death resulting from lipid peroxide accumulation. However, any pathological impacts of ferroptosis on osteoporosis remain unknown. Here, we show that ferroptosis is involved in excess-iron-induced bone loss and demonstrate that osteoporotic mice and humans have elevated skeletal accumulation of the NADPH oxidase 4 (NOX4) enzyme. Mechanistically, we found that the NOX4 locus contains iron-response element-like (IRE-like) sequences that are normally bound (and repressed) by the iron regulatory protein 1 (IRP1) protein. Binding with iron induces dissociation of IRP1 from the IRE-like sequences and thereby activates NOX4 transcription. Elevated NOX4 increases lipid peroxide accumulation and causes obvious dysregulation of mitochondrial morphology and function in osteoblasts. Excitingly, the osteoporotic bone loss which we initially observed in an excessive-iron accumulating mouse line (Hepc1-/-) was blocked upon treatment with the ferroptosis-inhibitor ferrostatin-1 (Ferr-1) and with the iron chelator deferoxamine (DFO), suggesting a potential therapeutic strategy for preventing osteoporotic bone loss based on disruption of ferroptosis.


Assuntos
Ferroptose , Sobrecarga de Ferro , Osteoporose , Humanos , Camundongos , Animais , NADPH Oxidase 4/metabolismo , Peróxidos Lipídicos , Ferro/metabolismo , Osteoblastos/metabolismo
5.
BMC Musculoskelet Disord ; 24(1): 46, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658540

RESUMO

BACKGROUND: Bone mineral density (BMD) and prevalence of osteoporosis may differ between urban and rural populations. This study aimed to investigate the differences in BMD characteristics between urban and rural populations in Jiangsu, China. METHODS: A total of 2,711 participants aged 20 years and older were included in the cross-sectional study. Multistage and stratified cluster random sampling was used as the sampling strategy. BMD was measured by the method of dual-energy x-ray absorptiometry (DXA). Data were collected through questionnaires/interview. BMD values at the lumbar spine (L1-L4), femoral neck, total hip, and greater trochanter were collected. Descriptive statistics were used to demonstrate the characteristics of urban and rural participants. Multivariate logistic regression analysis was utilized to analyze the factors that may be associated with osteoporosis in urban and rural populations. RESULTS: Of these participants, 1,540 (50.49%) were females and 1,363 (42.14%) were from urban. The prevalence of osteoporosis in urban and rural populations was 5.52% and 10.33%, respectively. In terms of gender, the prevalence of osteoporosis was 2.68% in males and 13.82% in females. For menopausal status, the prevalence of osteoporosis was 30.34% in postmenopausal females and 4.78% in premenopausal females. In urban populations, older age [adjusted odds ratio (AOR) = 2.36, 95%CI, 2.35-2.36), hypertension (AOR = 1.37, 95%CI, 1.36-1.37), unmarried (AOR = 4.04, 95%CI, 3.99-4.09), smoking everyday (AOR = 2.26, 95%CI, 2.23-2.28), family history of osteoporosis (AOR = 1.66, 95%CI, 1.65-1.67), dyslipidemia (AOR = 1.05, 95%CI, 1.04-1.05), and higher ß-crosslaps (ß-CTX) level (AOR = 1.02, 95%CI, 1.02-1.02) were associated with an increased risk of osteoporosis, while males (AOR = 0.04, 95%CI, 0.04-0.04), higher education level (AOR = 0.95, 95%CI, 0.95-0.95), and aquatic product intake (AOR = 0.99, 95%CI, 0.99-0.99) were related to decreased risk of osteoporosis. Similar results were also observed in rural populations, and (all P < 0.05). CONCLUSION: The prevalence of osteoporosis in rural populations was higher than that in urban populations, and the factors associated with the risk of osteoporosis were similar in urban and rural populations.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Masculino , Absorciometria de Fóton , Densidade Óssea , Estudos Transversais , Osteoporose/diagnóstico por imagem , Osteoporose/epidemiologia , Prevalência , Fatores de Risco , População Rural , China
6.
Free Radic Biol Med ; 193(Pt 2): 595-609, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36372285

RESUMO

NADPH oxidase 4 (Nox4) is the main source of reactive oxygen species, which promote osteoclast formation and lead to bone loss, thereby causing osteoporosis. However, the role of Nox4 in osteoblasts during early development remains unclear. We used zebrafish to study the effect of Nox4 deletion on bone mineralization in early development. nox4-/- zebrafish showed decreased bone mineralization during early development and significantly reduced numbers of osteoblasts, osteoclasts, and chondrocytes. Transcriptome sequencing showed that the TGF-ß signaling pathway was significantly disrupted in nox4-/- zebrafish. Inhibiting TGF-ß signaling rescued the abnormal bone development caused by nox4 deletion and increased the number of osteoblasts. We used Saos-2 human osteosarcoma cells to confirm our results, which clarified the role of Nox4 in human osteoblasts. Our results demonstrate the mechanism of reduced bone mineralization in early development and provide a basis for the clinical treatment of osteoporosis.


Assuntos
Osteoporose , Fator de Crescimento Transformador beta , Animais , Humanos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 961903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313751

RESUMO

Iron accumulation is an independent risk factor for postmenopausal osteoporosis, but mechanistic studies of this phenomenon are still focusing on molecular and genetic researches in model animal. Osteoporosis with iron accumulation is a distinct endocrine disease with complicated pathogenesis regulated by several proteins. However, the comprehensive proteome-wide analysis of human bone is lacking. Using multiplex quantitative tandem mass tag-based proteomics, we detected 2900 and quantified 1150 proteins from bone of 10 postmenopausal patients undergoing hip replacement. Comparing with non-osteoporosis patients, a total of 75 differentially expressed proteins were identified, comprising 53 downregulated proteins and 22 upregulated proteins. These proteins primarily affect oxidoreductase activity, GTPase activity, GTP binding, and neural nucleus development, were mainly enriched in neural, angiogenesis and energy-related pathways, and formed complex regulatory networks with strong interconnections. We ultimately identified 4 core proteins (GSTP1, LAMP2, COPB1, RAB5B) that were significantly differentially expressed in the bone of osteoporosis patients with iron accumulation, and validated the changed protein level in the serum of the medical examination population. Our systemic analysis uncovers molecular insights for revealing underlying mechanism and clinical therapeutics in osteoporosis with iron accumulation.


Assuntos
Osteoporose , Proteômica , Feminino , Animais , Humanos , Densidade Óssea , Osteoporose/metabolismo , Proteoma/metabolismo , Ferro
8.
J Orthop Surg Res ; 16(1): 525, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429140

RESUMO

BACKGROUND: Postmenopausal osteoporosis is characterized by an imbalance of bone resorption exceeding bone formation, resulting in a net loss of bone mass. Whether a menopause-related excess of iron contributes to the development of postmenopausal osteoporosis has remained unresolved due to a lack of an appropriate animal model. This study aimed to explore the effects of iron accumulation in bone mass in estrogen-deficient rats. METHODS: In the present study, ovariectomy (OVX) was performed in female rats and the changes of iron metabolism and some related modulated genes were detected. Ferric ammonium citrate (FAC) was used as a donor of iron for OVX rats. Moreover, micro-CT was performed to assess the bone microarchitecture in sham group, OVX, and FAC groups. Histological detection of iron in liver was assessed by Perl's staining. The expressions of ß-CTX and osteocalcin were assessed by ELISA. RESULTS: It was found that serum iron decreased after OVX. It was found that the expressions of Hepcidin in liver and Fpn, DMT-1 in duodenum significantly decreased at transcriptional level in OVX group than sham group. However, no difference existed in the expression of DMT-1. Then, ferric ammonium citrate (FAC) was used as a donor of iron for OVX rats. The FAC group manifested significant iron accumulation by increased serum iron and hepatic iron content. In addition, FAC treatment accelerated bone loss and decreased BMD and biomechanics in OVX rats. Moreover, bone biomarker ß-CTX rather than osteocalcin increased significantly in FAC groups than OVX group. CONCLUSIONS: In conclusion, no iron accumulation occurred in OVX rats. Furthermore, iron accumulation could further deteriorate osteopenia through enhanced bone resorption.


Assuntos
Densidade Óssea/fisiologia , Reabsorção Óssea , Estrogênios/química , Ferro/química , Osteoporose Pós-Menopausa , Animais , Feminino , Humanos , Osteocalcina , Ovariectomia , Ratos
9.
Aging (Albany NY) ; 13(8): 11296-11314, 2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820875

RESUMO

As a necessary trace element, iron is involved in many physiological processes. Clinical and basic studies have found that disturbances in iron metabolism, especially iron overload, might lead to bone loss and even be involved in postmenopausal osteoporosis. Hepcidin is a key regulator of iron homeostasis. However, the exact role of hepcidin in bone metabolism and the underlying mechanism remain unknown. In this study, we found that in postmenopausal osteoporosis cohort, the concentration of hepcidin in the serum was significantly reduced and positively correlated with bone mineral density. Ovariectomized (OVX) mice were then used to construct an osteoporosis model. Hepcidin overexpression in these mice significantly improved bone mass and rescued the phenotype of bone loss. Additionally, overexpression of hepcidin in OVX mice greatly reduced the number and differentiation of osteoclasts in vivo and in vitro. This study found that overexpression of hepcidin significantly inhibited ROS production, mitochondrial biogenesis, and PGC-1ß expression. These data showed that hepcidin protected osteoporosis by reducing iron levels in bone tissue, and in conjunction with PGC-1ß, reduced ROS production and the number of mitochondria, thus inhibiting osteoclast differentiation and bone absorption. Hepcidin could provide new targets for the clinical treatment of postmenopausal osteoporosis.


Assuntos
Hepcidinas/metabolismo , Proteínas Nucleares/metabolismo , Osteoporose Pós-Menopausa/patologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Idoso , Animais , Densidade Óssea/genética , Diferenciação Celular/genética , Células Cultivadas , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hepcidinas/sangue , Hepcidinas/genética , Humanos , Ferro/metabolismo , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Biogênese de Organelas , Osteoclastos/citologia , Osteoclastos/patologia , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/diagnóstico , Pós-Menopausa/sangue , Pós-Menopausa/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA