Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1302: 342503, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580412

RESUMO

BACKGROUND: The increasing uranium containing wastes generated during uranium mining and finishing pose a huge threat to the environment and human health, and thus robust strategies for on-site monitoring of uranium pollutant are of great significance for environmental protection around uranium tailings. RESULTS: Herein, a facile "turn-on" colorimetric platform that can achieve uranium detection by spectrometry and naked eyes was developed based on the uranium-enhanced nanozyme activity of covalent organic framework (JUC-505). Thanks to the extended π-conjugated skeleton and donor-acceptor (D-A) structure, JUC-505 exhibited superior photo-activated nanozyme activity, which would be prohibited when the cyano group in JUC-505 skeleton was transformed to the amidoxime group. Further results elucidated that the coordination of uranium with amidoxime groups led to the electron transfer between uranium and the JUC-505-AO skeleton, and thus significantly restored the nanozymatic activity of JUC-505-AO with the subsequent remarkable color changes. Moreover, the uranium concentrations in uranium tailing wastewater detected by the present "turn-on" colorimetric method were well agreed with those by ICP-MS, demonstrating a high accuracy of the present method in real samples. SIGNIFICANCE: The D-A structured JUC-505 with superior photocatalytic property and nanozymatic activity was applied to facilitate colorimetric detection of uranium, which displays the advantages of low detection limit, excellent selectivity, fast response and simple operation for uranium detection in real samples, and shows a great potential in on-site monitoring of uranium pollutant around uranium tailings as well as nuclear power plant.

2.
Luminescence ; 39(3): e4713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515291

RESUMO

As large numbers of people are suffering from gout, an accurate, rapid, and sensitive method for the detection of gout biomarker, uric acid, is important for its effective control, diagnosis, and therapy. Although colorimetric detection methods based on uricase have been considered, they still have limitations as they produce toxic H2O2 and are expensive and not stable. Here, a novel uricase-free colorimetric method was developed for the sensitive and selective detection of uric acid based on the light-induced oxidase-mimicking activity of a new photosensitized covalent organic framework (COF) (2,4,6-trimethylpyridine-3,5-dicarbonitrile-4-[2-(4-formylphenyl)ethynyl]benzaldehyde COF [DCTP-EDA COF]). DCTP-EDA COF has a strong ability to harvest visible light, and it could catalyze the oxidation of 1,4-dioxane, 3,3',5,5'-tetramethylbenzidine under visible light irradiation to produce obvious color changes. With the addition of uric acid, however, the significant inhibition of the oxidase-mimicking activity of DCTP-EDA COF remarkably faded the color, and thus uric acid could be colorimetrically detected in the range of 2.0-150 µM with a limit of detection of 0.62 µM (3σ/K). Moreover, the present colorimetric method exhibited high selectivity; uric acid level in serum samples was successfully determined, and the recoveries ranged from 96.5% to 105.64%, suggesting the high accuracy of the present colorimetric method, which demonstrates great promise in clinical analysis.


Assuntos
Gota , Estruturas Metalorgânicas , Humanos , Oxirredutases , Ácido Úrico , Peróxido de Hidrogênio , Colorimetria/métodos , Urato Oxidase
3.
Environ Pollut ; 316(Pt 1): 120544, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334776

RESUMO

The toxicity of microplastics (MPs) to marine microalgae has raised much concern. However, research at metabolic level is quite limited. In this study, the physiological and metabolic effects of polystyrene (PS) and aged polystyrene (A-PS) MPs on Dunaliella salina were investigated. Both PS and A-PS inhibited the growth of microalgae, but promoted the pigment synthesis in algal cells. The oxidative stress analysis indicated that PS and A-PS induced high production of reactive oxygen species (ROS), and caused oxidative damage to algal cells. Particularly, the highest ROS level in PS and A-PS groups were 1.70- and 2.24-fold of that in the control group, respectively. Untargeted metabolomics analysis indicated that PS and A-PS significantly increased the differential metabolites. Compared with the control group, the significant upregulation of glycerophospholipids metabolites illustrated that severe membrane lipid peroxidation occurred in the MPs groups. Metabolic pathways analysis showed that PS and A-PS perturbed the amino acid-related metabolic pathways. In particular, the amino acid biosynthesis and ATP-binding cassette (ABC) transporter pathways were significantly upregulated, thus promoting nitrogen storage and transmembrane transport in Dunaliella salina. Transmembrane transport requires a large amount of ATP; as a result, algal cell division is inhibited. In addition, A-PS stimulated more active glutathione metabolism than PS. These results enrich the understanding of the toxicity of PS MPs to microalgae at the metabolic level, and are helpful for further assessing the ecological impacts of MPs on microalgae.


Assuntos
Clorofíceas , Microalgas , Poluentes Químicos da Água , Microplásticos/toxicidade , Poliestirenos/metabolismo , Plásticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofíceas/metabolismo , Aminoácidos/metabolismo , Trifosfato de Adenosina/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Nanomaterials (Basel) ; 11(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34684912

RESUMO

Recently, the effects of nanoplastics (NPs) on aquatic organisms have attracted much attention; however, research on the toxicity of NPs to microalgae has been insufficient. In the present study, the effects of polystyrene nanoplastics (nano-PS, 50 nm) on growth inhibition, chlorophyll content, oxidative stress, and algal toxin production of the marine toxigenic dinoflagellate Amphidinium carterae Hulburt were investigated. Chlorophyll synthesis was promoted by nano-PS on day 2 but was inhibited on day 4; high concentrations of nano-PS (≥50 mg/L) significantly inhibited the growth of A. carterae. Moreover, despite the combined effect of superoxide dismutase (SOD) and glutathione (GSH), high reactive oxygen species (ROS) level and malondialdehyde (MDA) content were still induced by nano-PS (≥50 mg/L), indicating severe lipid peroxidation. In addition, the contents of extracellular and intracellular hemolytic toxins in nano-PS groups were significantly higher than those in control groups on days 2 and 8, except that those of extracellular hemolytic toxins in the 100 mg/L nano-PS group decreased on day 8 because of severe adsorption of hemolytic toxins to the nano-PS. Hence, the effects of nano-PS on A. carterae are closely linked to nano-PS concentration and surface properties and exposure time. These findings provide a deep understanding of the complex effects of NPs on toxigenic microalgae and present valuable data for assessing their environmental risks.

5.
Nanomaterials (Basel) ; 11(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34443964

RESUMO

Graphene oxide (GO) is widely used in various fields and has raised concerns regarding its potential environmental fate and effect. However, there are few studies on its influence on coexisting pollutants. In this study, the phototransformation of GO and coexisting sulfamethazine (SMZ) under UV irradiation was investigated, with a focus on the role of reactive oxygen species. The results demonstrated that GO promoted the degradation of SMZ under UV irradiation. The higher the concentration of GO, the higher the degradation rate of SMZ, and the faster the first-order reaction rate. Two main radicals, ∙OH and 1O2, both contributed greatly in terms of regulating the removal of SMZ. Cl-, SO42-, and pH mainly promoted SMZ degradation by increasing the generation of ∙OH, while humic acid inhibited SMZ degradation due to the reduction of ∙OH. Moreover, after UV illumination, the GO suspension changed from light yellow to dark brown with increasing absorbance at a wavelength of 225 nm. Raman spectra revealed that the ID/IG ratio slightly decreased, indicating that some of the functional groups on the surface of GO were removed under low-intensity UV illumination. This study revealed that GO plays important roles in the photochemical transformation of environmental pollutants, which is helpful for understanding the environmental behaviors and risks of nanoparticles in aquatic environments.

6.
Sci Total Environ ; 797: 149180, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311354

RESUMO

The toxicity of microplastics to marine organisms has attracted much attention; however, studies of their effects on marine microalgae remain limited. Here, the effects of the single and combined toxicity of polystyrene (PS) and triphenyl phosphate (TPhP) on the cell growth, photosynthesis, and oxidative stress of Chaetoceros meülleri were investigated. PS inhibited growth of the algae cells and caused a dose-dependent effect on oxidative stress. The significantly high production of reactive oxygen species (ROS) induced severe cell membrane damage, as confirmed by high fluorescence polarization. However, there was no obvious decrease in chlorophyll a content, and 80 mg/L of PS significantly promoted chlorophyll a synthesis. The TPhP also inhibited cell growth, except at low concentrations (0.2-0.8 mg/L), which stimulated algae growth over 48 h. Moreover, no obvious decrease in chlorophyll a and maximal photochemical efficiency of PSII was found in the TPhP experimental groups except for 3.2 mg/L TPhP, where the rapid light curves showed a significantly reduced photosynthetic capacity of algae. In addition, TPhP caused high ROS levels at 96 h, resulting in cell membrane damage. Using the additive index and independent action methods, the combined toxic effects of PS and TPhP on the algae were evaluated as antagonistic; however, cell membrane damage caused by high ROS levels was still noticeable. This study has shown the potential toxicity of PS and TPhP to marine microalgae, and provided insights into the combined risk assessment of TPhP and microplastics in the marine environment.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Clorofila A , Organofosfatos , Estresse Oxidativo , Fotossíntese , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Sci Total Environ ; 728: 138335, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361107

RESUMO

In this study, the photochemistry of ZnO NPs and their effect on phototransformation of coexisting pollutants (sulfamethazine, SMZ) were systematically investigated under UV illumination. SMZ (40 µM) degradation was accelerated by ZnO NPs, as the observed reaction rate constant (kobs) increased from 0.0809 h-1 to 0.7982 h-1 at the concentration of 5-50 mg/L ZnO NPs. Free radical quenching and quantification experiments indicated the reactive oxygen species, especially the hydroxyl radicals (OH) and singlet oxygen (1O2), made great contributions to SMZ degradation. Moreover, SMZ was prone to be degraded at high pH with kobs reaching upto 0.5734 h-1 at pH 12.0. The presence of Cl- (1000 mM) reduced the SMZ decomposition greatly by 2.4-fold while the effects of SO42- (30 mM) were very limited. Natural organic matter including humic acid and tannic acid both inhibited the degradation of SMZ with kobs decreasing by 35.4-fold and 132-fold, respectively. During the photoreaction process, ZnO NPs fragmented into relative small size pieces obviously along with the release of Zn2+. Finally, the possible cotransformation pathways of ZnO NPs and SMZ were proposed based on SMZ degradation intermediates and the above results. These findings of the present study suggested that the photoreactions of ZnO NPs greatly influenced the transformation of contaminants and ZnO NPs themselves in aquatic environment, which may have significant implications for the fate assessment of NPs and environmental pollutants.

9.
Environ Pollut ; 262: 114347, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32179231

RESUMO

Microplastics have attracted much attention in recent years as they can interact with pollutants in water environment. However, nanoplastics (NPs) with or without the surface functionalization modification have not been thoroughly explored. Here, the sorption behaviors of two fluoroquinolones (FQs), including norfloxacin (NOR) and levofloxacin (LEV) on polystyrene NPs (nano-PS) and carboxyl-functionalized polystyrene NPs (nano-PS-COOH) were investigated. The results showed that sorption isotherms were nonlinear and well fitted by Langmuir model. The sorption capacities of NOR and LEV on nano-PS-COOH were higher than those on nano-PS, and their physical interactions, including polar interaction, electrostatic interaction and hydrogen bonding may be the dominant mechanisms. Moreover, the increase of pH firstly increased the sorption of two FQs on NPs and then decreased because NOR and LEV had a reverse charge at different pH values. Salinity and dissolved organic matter both inhibited the sorption process. These findings show that NPs with or without the surface functionalization modification have different sorption behaviors for environmental pollutants, which deserve our further concern.


Assuntos
Plásticos , Poluentes Químicos da Água/análise , Adsorção , Fluoroquinolonas , Poliestirenos , Salinidade
10.
Environ Pollut ; 249: 1106-1114, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31146316

RESUMO

Graphene oxide (GO) has been demonstrated to be key component for diverse applications. However, their potential environmental reactivity, fate and risk have not been fully evaluated to date. In this study, we investigated the photochemical reactivity of four types of GO with different oxidation degrees in aqueous environment, and their related toxicity to two bacterial models Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was further compared. After UV-irradiation, a large amount of oxygen functional groups on GO were reduced and the electronic conjugations within GO were restored as indicated by UV-visible absorption spectra, X-ray photoelectron spectroscopy and Raman spectroscopy analysis. Moreover, the higher the oxidation degree of the pristine GO was, the more obvious of the photo-transformation changes were. In order to further reveal the photochemical reactivity mechanisms, the reactive oxygen species (ROS) generation of GO was monitored. The quantity of ROS including singlet oxygen (1O2), superoxide anions (O2·-), and hydroxyl radicals (·OH) increased with increasing oxidation degree of GO, which was in accordance with the previous characterization results. Scanning electron microscopy and cell growth analyses of E. coli and S. aureus showed that the photochemical transformation enhanced the toxicity of GO, which might be due to an increase in functional group density. The higher conductivity of the reduced graphene oxide (RGO) was responsible for its stronger toxicity than GO through membrane damage and oxidative stress to bacteria. This study revealed that the oxidation degrees play important roles in photochemical transformation and the resulting toxicity of GO, which is helpful for understanding the environmental behaviors and risks of GO in aquatic environments.


Assuntos
Escherichia coli/efeitos dos fármacos , Grafite/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Escherichia coli/crescimento & desenvolvimento , Grafite/efeitos da radiação , Oxirredução , Processos Fotoquímicos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Poluentes Químicos da Água/efeitos da radiação
11.
Chemosphere ; 214: 688-694, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30292051

RESUMO

Microplastics have become a major concern in recent years as they can be recognized as the transport vectors for pollutants in environment. In this study, the sorption behavior of two phthalate esters (PAEs), including diethyl phthalate (DEP) and dibutyl phthalate (DBP), onto three types of microplastics (PVC: polyvinyl chloride, PE: polyethylene, and PS: polystyrene) was investigated. The sorption isotherms of both DEP and DBP on microplastics were highly linear, suggesting that the partition was the main sorption mechanism. The Kd values of DBP were much higher than those of DEP, demonstrating that hydrophobic interaction governed the partition mechanism. Sorption of the two PAEs on the three microplastics followed the order of PS > PE > PVC, indicating that chemical properties of microplastics played an important roles in their sorption behaviors. Solution pH and natural organic matter had no significant impact on PAEs sorption by microplastics. However, the presence of NaCl and CaCl2 enhanced the sorption of both DEP and DBP because of the salting-out effect. The findings of the present study may have significant implications for the fate and transport assessment of both PAEs and microplastics.


Assuntos
Dibutilftalato/química , Ácidos Ftálicos/química , Polietileno/química , Poliestirenos/química , Cloreto de Polivinila/química , Dibutilftalato/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ácidos Ftálicos/metabolismo , Polietileno/metabolismo , Poliestirenos/metabolismo , Cloreto de Polivinila/metabolismo
12.
Environ Pollut ; 246: 509-517, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30583159

RESUMO

Toxicity of single microplastics on organisms has been reported widely, however, their joint toxicity with other contaminants on phytoplankton is rarely investigated. Here, we studied the toxicity of triclosan (TCS) with four kinds of microplastics namely polyethylene (PE, 74 µm), polystyrene (PS, 74 µm), polyvinyl chloride (PVC, 74 µm), and PVC800 (1 µm) on microalgae Skeletonema costatum. Both growth inhibition and oxidative stress including superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. We found that TCS had obvious inhibition effect on microalgae growth within the test concentrations, and single microplastics also had significant inhibition effect which followed the order of PVC800 > PVC > PS > PE. However, the joint toxicity of PVC and PVC800 in combination with TCS decreased more than that of PE and PS. The higher adsorption capacity of TCS on PVC and PVC800 was one possible reason for the greater reduction of their toxicity. The joint toxicity of PVC800 was still most significant (PE < PVC < PS < PVC800) because of the minimum particle size. According to the independent action model, the joint toxicity systems were all antagonism. Moreover, the reduction of SOD was higher than MDA which revealed that the physical damage was more serious than intracellular damage. SEM images revealed that the aggregation of microplastics and physical damage on algae was obvious. Collectively, the present research provides evidences that the existence of organic pollutants is capable of influencing the effects of microplastics, and the further research on the joint toxicity of microplastics with different pollutants is urgent.


Assuntos
Diatomáceas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Fitoplâncton/efeitos dos fármacos , Plásticos/toxicidade , Polietileno/toxicidade , Poliestirenos/toxicidade , Cloreto de Polivinila/toxicidade , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Malondialdeído/análise , Microalgas/efeitos dos fármacos , Estresse Oxidativo , Tamanho da Partícula , Superóxido Dismutase/análise , Poluentes Químicos da Água/análise
13.
Mater Sci Eng C Mater Biol Appl ; 91: 696-704, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033304

RESUMO

A nanocomposite with multi-walled carbon nanotubes (MWCNTs) coated with surface molecularly imprinted polymers (MIPs) poly(3-aminophenylboronic acid) (PAPBA) was successfully prepared via potentiodynamic electropolymerization and tested as an effective electrochemical material for epinephrine (EP) detection. The morphology and properties of the sensing material were characterized with scanning electron microscopy and electrochemical impedance spectroscopy. Compared with MWCNTs or non-imprinted polymers PAPBA modified MWCNTs electrodes, the PAPBA(MIPs)/MWCNTs modified electrode showed a lower charge transfer resistance and enhanced electrochemical performance for EP detection. The improved performance can be attributed to the large amount of specific imprinted cavities with boric acid group which can selectively adsorb EP molecule and the synergistic effect between MWCNTs and PAPBA(MIPs). The effects of pH, the molar ratio between monomer and template molecule, the cycle number of electropolymerization, and the accumulation time of the modified electrode on the sensing performance were investigated. It was found that under the optimal conditions, the PAPBA(MIPs)/MWCNTs sensor could effectively recognize EP from many possible interferents of higher concentration within a wide linear range of 0.2-800 µmol·L-1, with low detection limit of 35 nmol·L-1, high sensitivity and good discrimination. The detection of EP in human serum and real injection samples using the PAPBA(MIPs)/MWCNTs sensor also gave satisfactory results.


Assuntos
Ácidos Borônicos/química , Técnicas Eletroquímicas/métodos , Epinefrina/análise , Impressão Molecular/métodos , Nanocompostos/química , Nanotubos de Carbono/química , Carbono/química , Eletrodos , Epinefrina/sangue , Vidro/química , Humanos , Concentração de Íons de Hidrogênio , Nanotubos de Carbono/ultraestrutura , Polimerização , Reprodutibilidade dos Testes
14.
Mater Sci Eng C Mater Biol Appl ; 77: 151-158, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532016

RESUMO

Two nanostructured poly(sulfosalicylic acid) (PSA) films were synthesized from room temperature ionic liquid (RTIL) or aqueous solution on a glassy carbon electrode (GCE) via potentiodynamic electropolymerization. The morphology and properties of the PSA films were characterized with scanning electron microscopy (SEM), scanning probe microscopy (SPM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It was found that solvent had a major influence on the morphology and electrochemical properties of the resultant PSA films. The PSA(Ι) film, which was prepared from RTIL, consists of granular particles with cracks, whereas the PSA(II) film prepared from aqueous solution consists of nano-triangles with a more compact surface. The blocking effect of the PSA(Ι) film for the [Fe(CN)6]3-/4- electrochemical probe is much stronger, and a remarkably enhanced voltammetric response of the [Ru(NH3)6]3+ electrochemical probe can be observed for the PSA(II) film. When it is used to detect dopamine in the presence of a high concentration of ascorbic acid, PSA(II)/GCE has three linear parts with better discrimination and a detection limit of 0.03µM. For PSA(Ι)/GCE, there are two linear parts with a detection limit of 0.05µM. However, the reproducibility and storage stability of PSA(Ι)/GCE are better than those of PSA(ΙI)/GCE.


Assuntos
Nanoestruturas , Benzenossulfonatos , Carbono , Dopamina , Técnicas Eletroquímicas , Eletrodos , Reprodutibilidade dos Testes , Salicilatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA