Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 25(11): 1019-1027, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297778

RESUMO

MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells.


Assuntos
MicroRNAs/genética , Fases de Leitura Aberta , Regiões 3' não Traduzidas , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Pareamento de Bases , Regulação da Expressão Gênica , Inativação Gênica , Células HeLa , Humanos , MicroRNAs/metabolismo , Modelos Biológicos , Biossíntese de Proteínas , Motivo de Reconhecimento de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo
2.
Nat Struct Mol Biol ; 23(2): 125-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26809121

RESUMO

EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2-Å resolution, respectively. In Post-EF4, peptidyl-tRNA occupies the peptidyl (P) site, but the interaction between its CCA end and the P loop is disrupted. In Pre-EF4, the peptidyl-tRNA assumes a unique position near the aminoacyl (A) site, denoted the A site/EF4 bound (A/4) site, with a large displacement at its acceptor arm. Mutagenesis analyses suggest that a specific region in the EF4 C-terminal domain (CTD) interferes with base-pairing between the peptidyl-tRNA 3'-CCA and the P loop, whereas the EF4 CTD enhances peptidyl-tRNA interaction at the A/4 site. Therefore, EF4 induces back-translocation by disengaging the tRNA's CCA end from the peptidyl transferase center of the translating ribosome.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Estrutura Terciária de Proteína , Transporte de RNA , Aminoacil-RNA de Transferência/química , Subunidades Ribossômicas Maiores de Bactérias/química
3.
Nucleic Acids Res ; 43(21): 10525-33, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26432831

RESUMO

During translation, elongation factor G (EF-G) plays a catalytic role in tRNA translocation and a facilitative role in ribosome recycling. By stabilizing the rotated ribosome and interacting with ribosome recycling factor (RRF), EF-G was hypothesized to induce the domain rotations of RRF, which subsequently performs the function of splitting the major intersubunit bridges and thus separates the ribosome into subunits for recycling. Here, with systematic mutagenesis, FRET analysis and cryo-EM single particle approach, we analyzed the interplay between EF-G/RRF and post termination complex (PoTC). Our data reveal that the two conserved loops (loop I and II) at the tip region of EF-G domain IV possess distinct roles in tRNA translocation and ribosome recycling. Specifically, loop II might be directly involved in disrupting the main intersubunit bridge B2a between helix 44 (h44 from the 30S subunit) and helix 69 (H69 from the 50S subunit) in PoTC. Therefore, our data suggest a new ribosome recycling mechanism which requires an active involvement of EF-G. In addition to supporting RRF, EF-G plays an enzymatic role in destabilizing B2a via its loop II.


Assuntos
Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , Ribossomos/química , Microscopia Crioeletrônica , Mutação , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
4.
Nat Struct Mol Biol ; 21(9): 817-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108354

RESUMO

During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.


Assuntos
Anticódon/metabolismo , Códon/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/genética , Conformação Proteica , Transporte de RNA , Alinhamento de Sequência
5.
Nucleic Acids Res ; 40(21): 10851-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965132

RESUMO

Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Ligação ao GTP/química , Chaperonas Moleculares/química , Proteínas Ribossômicas/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Eletricidade Estática , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(16): 6118-23, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22492979

RESUMO

Double-stranded RNA viruses in the family Reoviridae are capable of transcribing and capping nascent mRNA within an icosahedral viral capsid that remains intact throughout repeated transcription cycles. However, how the highly coordinated mRNA transcription and capping process is facilitated by viral capsid proteins is still unknown. Cypovirus provides a good model system for studying the mRNA transcription and capping mechanism of viruses in the family Reoviridae. Here, we report a full backbone model of a transcribing cypovirus built from a near-atomic-resolution density map by cryoelectron microscopy. Compared with the structure of a nontranscribing cypovirus, the major capsid proteins of transcribing cypovirus undergo a series of conformational changes, giving rise to structural changes in the capsid shell: (i) an enlarged capsid chamber, which provides genomic RNA with more flexibility to move within the densely packed capsid, and (ii) a widened peripentonal channel in the capsid shell, which we confirmed to be a pathway for nascent mRNA. A rod-like structure attributable to a partially resolved nascent mRNA was observed in this channel. In addition, conformational change in the turret protein results in a relatively open turret at each fivefold axis. A GMP moiety, which is transferred to 5'-diphosphorylated mRNA during the mRNA capping reaction, was identified in the pocket-like guanylyltransferase domain of the turret protein.


Assuntos
Microscopia Crioeletrônica/métodos , Reoviridae/genética , Reoviridae/ultraestrutura , Transcrição Gênica , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA