Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Surg ; 110(4): 2115-2121, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241323

RESUMO

BACKGROUND: The association between postoperative outcomes of robotic-assisted total knee arthroplasty (RA-TKA) and nutrition status among elderly adults remained unclear. The authors aimed to evaluate these associations and provide a nutrition status reference for the surgical technique selection of TKA. METHODS: In the present study, the authors used data from a multicenter, prospective, randomized controlled project, which recruited patients underwent TKA therapy. A total of 88 elderly adults (age ≥65 years old) were included in this study. Their preoperative and postoperative demographic data and radiographic parameters were collected. Clinical outcomes, including postoperative hip-knee-ankle (HKA) angle deviation, knee society score (KSS), 10 cm visual analog scale, and so on, were observed and compared between the RA-TKA group and the conventional TKA group. Logistic regression was performed to adjust several covariates. In addition, according to the results of restricted cubic splines analyses, all participants were categorized into two groups with GNRI≤100 and GNRI >100 for further subgroup analyses. RESULTS: Our results showed despite having a lower postoperative HKA angle deviation, the RA-TKA group had a similar postoperative KSS score compared with the conventional TKA group in elderly adults. Among elderly patients with GNRI>100, RA-TKA group achieved significantly more accurate alignment (HKA deviation, P =0.039), but did not obtain more advanced postoperative KSS scores because of the compensatory effect of good nutrition status. However, among elderly patients with GNRI≤100, RA-TKA group had significantly higher postoperative KSS scores compared to the conventional TKA group ( P =0.025) and this association were not altered after adjustment for other covariates. CONCLUSION: Considering the clinical outcomes of conventional TKA may be more susceptible to the impact of nutrition status, elderly patients with GNRI≤100 seem to be an applicable population for RA-TKA, which is more stable and would gain significantly more clinical benefits compared with conventional TKA.


Assuntos
Artroplastia do Joelho , Estado Nutricional , Procedimentos Cirúrgicos Robóticos , Humanos , Artroplastia do Joelho/métodos , Artroplastia do Joelho/efeitos adversos , Feminino , Masculino , Idoso , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Estudos Prospectivos , Resultado do Tratamento , Idoso de 80 Anos ou mais , Avaliação Geriátrica , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
2.
Small ; 20(7): e2303506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806770

RESUMO

Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos  were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteólise , Humanos , Administração Intravenosa , Macrófagos
3.
Bioengineering (Basel) ; 10(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36829751

RESUMO

This study aimed to develop a noninvasive, economical and effective subclinical renal damage (SRD) risk assessment tool to identify high-risk asymptomatic people from a large-scale population and improve current clinical SRD screening strategies. Based on the Hanzhong Adolescent Hypertension Cohort, SRD-associated variables were identified and the SRD risk assessment score model was established and further validated with machine learning algorithms. Longitudinal follow-up data were used to identify child-to-adult SRD risk score trajectories and to investigate the relationship between different trajectory groups and the incidence of SRD in middle age. Systolic blood pressure, diastolic blood pressure and body mass index were identified as SRD-associated variables. Based on these three variables, an SRD risk assessment score was developed, with excellent classification ability (AUC value of ROC curve: 0.778 for SRD estimation, 0.729 for 4-year SRD risk prediction), calibration (Hosmer-Lemeshow goodness-of-fit test p = 0.62 for SRD estimation, p = 0.34 for 4-year SRD risk prediction) and more potential clinical benefits. In addition, three child-to-adult SRD risk assessment score trajectories were identified: increasing, increasing-stable and stable. Further difference analysis and logistic regression analysis showed that these SRD risk assessment score trajectories were highly associated with the incidence of SRD in middle age. In brief, we constructed a novel and noninvasive SRD risk assessment tool with excellent performance to help identify high-risk asymptomatic people from a large-scale population and assist in SRD screening.

4.
FASEB J ; 37(1): e22711, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520091

RESUMO

Accelerating the repair of a bone defect is crucial clinically due to the increased prevalence of trauma, tumor, and infections in bone. Studies have found that excess acute and chronic inflammation attenuate osteogenic differentiation of BMSCs (bone marrow mesenchymal stem cells). Moreover, TNF-α and NF-κB could inhibit osteoblasts differentiation of BMSCs and promote osteoclastogenesis via multiple mechanisms, such as increasing osteoclast precursor cells and acting synergistically with cell cytokines. However, melatonin could inhibit the expression of TNFα/NF-κB and promote bone formation by activating the Wnt/ß-catenin signaling pathway. However, there has been no evidence regarding the effect of melatonin on TNFα/NF-κB-inhibited osteoblastogenesis and bone formation. This study aimed to investigate the role of melatonin on TNFα/NF-κB-inhibited osteoblastogenesis and bone formation. Micro-CT, high-throughput screening, overexpression, and other methods were used, and we found that the number of osteoblasts was elevated with melatonin treatment. Additionally, TNFα/NF-κB signaling was inhibited, while miR-335-5p expression increased markedly following treatment with melatonin. Furthermore, miR-335-5p negatively regulated TNFα/NF-κB signaling, while miR-335-5p inhibitor ameliorated the effects of melatonin on TNFα/NF-κB. In conclusion, melatonin facilitates osteogenesis in bone defect healing by enhancing miR-335-5p expression and inhibiting the TNFα/NF-κB pathway.


Assuntos
Melatonina , MicroRNAs , NF-kappa B/metabolismo , Osteogênese , Fator de Necrose Tumoral alfa/metabolismo , Melatonina/farmacologia , MicroRNAs/metabolismo , Diferenciação Celular , Via de Sinalização Wnt , Células Cultivadas
5.
Front Plant Sci ; 13: 1053741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452112

RESUMO

Effects of wind erosion on growth and adaptability have been widely reported in many plants, but little attention has been paid to dioecious plants. Recent studies have shown that sex-specific responses to environmental changes in many plants exist. To explore sexual differences in response to wind erosion, female and male Salix gordejevii saplings growing on inter-dune land (no erosion) and on the windward slope of the dune (20cm wind erosion) in Hunshandake Sandy Land were chosen and their morphology, biomass and physiological traits were investigated, respectively. Wind erosion significantly reduced plant growth, biomass accumulation, gas exchange and chlorophyll fluorescence, and obviously disrupted osmotic regulation function and antioxidant enzyme system in both sexes, especially in males. Under wind erosion condition, females exhibited higher sapling height (SH), basal diameter (BD), leaf dry mass (LDM), root dry mass (RDM), total dry mass (TDM), root percentage in total dry mass, net photosynthesis rate (P n), maximum efficiency of photosystem II (F v/F m), effective quantum yield of PSII (Φ PSII), relative water content (RWC) of leaves, superoxide dismutase (SOD) and peroxidase (POD) activities, but lower malondialdehyde (MDA), proline as well as soluble sugar content than did males. However, no significant sexual differences in most of these traits were observed under no erosion condition. Our results demonstrated that females possess a greater resistance to wind erosion than do males, with females having a better photosynthetic capacity, stronger water retention capacity and more efficient antioxidant system to alleviate negative effects caused by aeolian environment.

6.
Front Cell Dev Biol ; 10: 857612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392165

RESUMO

Background: The lack of effective biomarkers makes it difficult to achieve early diagnosis and intervention for osteonecrosis of the femoral head (ONFH). Hence, we aimed to identify novel long noncoding RNA (lncRNA) biomarkers for ONFH. Methods: High-throughput RNA sequencing was performed to detect lncRNA and mRNA expression levels in subchondral bone samples from three patients with ONFH and three patients with femoral neck fractures. Integrated bioinformatics analyses were conducted to identify lncRNAs associated with ONFH development and their potential functions and signaling pathways. A co-expression network was constructed based on the gene time-series expression data in GSE113253. After selecting lncRNA GAS5 as a novel biomarker for ONFH, bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation assays were performed to verify the association between lncRNA GAS5 and osteogenic differentiation. Alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to measure the osteogenic phenotype and lncRNA GAS5 expression. Finally, for further validation, ONFH rat models were established, and lncRNA GAS5 expression in subchondral bone was detected by RT-qPCR. Results: We identified 126 and 959 differentially expressed lncRNAs and genes, respectively. lncRNA GAS5 expression level was significantly downregulated in patients with ONFH compared to the control group patients. The BMSC osteogenic differentiation assays showed that ALP activity increased gradually from days 3 to 7, while the lncRNA GAS5 expression level was significantly upregulated in the osteogenic differentiation induction groups. Furthermore, in vivo experiments suggested that the bone volume/tissue volume value and trabecular thickness significantly decreased in the ONFH rat model group compared to the control group, whereas the trabecular space significantly increased in the ONFH group compared to the control group. In addition, the lncRNA GAS5 expression level significantly decreased in the ONFH rat model group. Conclusion: The lncRNA GAS5 expression level was highly associated with BMSC osteogenic differentiation and was significantly downregulated in both the subchondral trabecular bone tissue of ONFH patients and ONFH rat models. Therefore, lncRNA GAS5 can serve as an ONFH osteogenic biomarker to provide an effective target for early diagnosis and molecular therapy of ONFH.

7.
Bone Res ; 10(1): 28, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279673

RESUMO

Core decompression (CD) with the elimination of osteonecrotic bone is the most common strategy for treating early-stage nontraumatic osteonecrosis of the femoral head (ONFH). Adjuvant treatments are widely used in combination with CD as suitable methods of therapy. Existing augmentations have to be fabricated in advance. Here, we report a novel injectable glycerin-modified polycaprolactone (GPCL) that can adapt to the shape of the CD cavity. GPCL shows great flowability at 52.6 °C. After solidification, its compressive modulus was 120 kPa at body temperature (37 °C). This excellent characteristic enables the polymer to provide mechanical support in vivo. In addition, GPCL acts as a carrier of the therapeutic agent zoledronic acid (ZA), demonstrating sustained release into the CD region. ZA-loaded GPCL was injected into ONFH lesions to treat early-stage nontraumatic cases. Compared to that in the CD group, CD+ZA-loaded GPCL injection preserved bone density and increased the collagen level in the femoral head. At the interface between the GPCL and CD tunnel wall, osteogenesis was significantly promoted. In addition, morphological evaluations revealed that the femoral heads in the CD+ZA-GPCL group exhibited improved pressure resistance. These results suggest a strategy effective to preserve the bone density of the femoral head, thus decreasing the possibility of femoral head collapse. This novel injectable polymer has, therefore, considerable potential in clinical applications.

8.
J Transl Med ; 20(1): 132, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296324

RESUMO

BACKGROUND: Osteoporosis is a disease threatening the health of millions of individuals. Melatonin is found to be a potential anti-osteoporosis drug. However, whether melatonin plays a role against osteoporosis at different stages of the menopause and the underlying mechanisms are unknown. METHODS: Ovariectomy was utilized as a model of perimenopausal and postmenopausal osteoporosis. A total of 100 mg/kg melatonin, or solvent alone, was added to the drinking water of the rats over 8 weeks. Perimenopausal rats immediately received intervention following ovariectomy while postmenopausal rats received intervention 8 weeks after ovariectomy. All rats underwent overdose anesthesia following intervention after which blood samples and femurs were collected for further analysis. Rat femurs were scanned using micro-CT and examined histologically. The serum levels of melatonin and osteogenic biochemical markers were measured and the expression of osteogenesis-associated genes (Runx2, Sp7) were quantified by real-time quantitative PCR. Alkaline phosphatase (ALP) activity and the gene expression (Col1a1, Runx2, Alpl, and Bglap) were measured after bone marrow mesenchymal stem cells (BMSCs) were osteogenically induced, both with and without melatonin in vitro. ALP staining and Alizarin Red S staining were used to identify osteogenesis. RESULTS: Analysis by micro-CT and histological staining demonstrated that bone mass decreased and bone microarchitecture deteriorated over time after ovariectomy. Intervention with melatonin increased bone mass in normal, perimenopausal, and postmenopausal osteoporotic rats. Serum levels of ALP continuously increased after ovariectomy while osteocalcin levels initially rose, then decreased. Melatonin increased the serum levels of ALP and osteocalcin and mRNA expression levels of Runx2 and Sp7 in normal and postmenopausal rats, the opposite of the markers in perimenopausal rats. In vitro study demonstrated that 100 µmol/L melatonin increased the mRNA expression of Col1a1, Runx2, and Alpl three and/or seven days after intervention, and Alpl and Bglap 14 d after intervention. Melatonin increased ALP activity and the extent of ALP and matrix mineralization in the late stage of osteogenesis. CONCLUSIONS: Bone mass continuously decreased after ovariectomy, while melatonin increased bone mass and ameliorated bone metabolism in normal, perimenopausal, and postmenopausal osteoporotic rats due to the induction of osteogenic differentiation in BMSCs.


Assuntos
Melatonina , Células-Tronco Mesenquimais , Animais , Feminino , Melatonina/farmacologia , Osteogênese , Perimenopausa , Pós-Menopausa , Ratos
9.
Am J Transl Res ; 13(10): 11126-11143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786047

RESUMO

MicroRNAs (miRNAs) have been demonstrated as crucial transcriptional regulators in proliferation, differentiation, and tumorigenesis. The comprehensive miRNA profiles of osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) under the condition of mechanical stress remains largely unknown. In this study, we aimed to discover the miRNA expression profiles of hDPSCs exposed to mechanical stress under the osteogenic/odontogenic process. We found that mechanical stress (0.09 MPa and 0.18 MPa, respectively, 30 min/day) significantly promoted the proliferation of hDPSCs since the fifth day. The expressions of DSPP, DMP1, and RUNX2 were significantly increased on day 7 in the presence of 0.09 MPa and 0.18 MPa mechanical stress. On day 14, the expression levels of DSPP, DMP1, and RUNX2 were decreased in the presence of mechanical stress. Among 2578 expressed miRNAs, 5 miRNAs were upregulated and 3 miRNAs were downregulated. Six hub target genes were merged in protein-protein interactions (PPI) network analysis, in which existed only one sub-network. Bioinformatics analysis identified an array of affected signaling pathways involved in the development of epithelial and endothelial cells, cell-cell junction assembly, Rap1 signaling pathway, regulation of actin cytoskeleton, and MAPK signaling pathway. Our results revealed the miRNA expression profiles of osteogenic/odontogenic differentiation of hDPSCs under mechanical stress and identified eight miRNAs that were differentially expressed in response to the mechanical stress. Bioinformatics analysis also showed that various signaling pathways were affected by mechanical stress.

10.
Bioengineered ; 12(1): 5727-5738, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516309

RESUMO

Early risk assessments and interventions for metabolic syndrome (MetS) are limited because of a lack of effective biomarkers. In the present study, several candidate genes were selected as a blood-based transcriptomic signature for MetS. We collected so far the largest MetS-associated peripheral blood high-throughput transcriptomics data and put forward a novel feature selection strategy by combining weighted gene co-expression network analysis, protein-protein interaction network analysis, LASSO regression and random forest approaches. Two gene modules and 51 hub genes as well as a 9-hub-gene signature associated with metabolic syndrome were identified. Then, based on this 9-hub-gene signature, we performed logistic analysis and subsequently established a web nomogram calculator for metabolic syndrome risk (https://xjtulgz.shinyapps.io/DynNomapp/). This 9-hub-gene signature showed excellent classification and calibration performance (AUC = 0.968 in training set, AUC = 0.883 in internal validation set, AUC = 0.861 in external validation set) as well as ideal potential clinical benefit.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Síndrome Metabólica/genética , Mapas de Interação de Proteínas/genética , Transcriptoma/genética , Algoritmos , Biomarcadores/metabolismo , Bases de Dados Genéticas , Feminino , Humanos , Masculino
11.
Bioengineered ; 12(1): 3864-3872, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34269146

RESUMO

The lack of efficient biomarkers is the main reason for the inaccurate early diagnosis and poor treatment outcomes of patients with metabolic syndrome (MetS). The current study aimed to identify several novel microRNA (miRNA) biomarkers for metabolic syndrome via high-throughput sequencing and comprehensive bioinformatics analysis. Through high-throughput sequencing and differentially expressed miRNA (DEM) analysis, we first identified two upregulated and 36 downregulated DEMs in the plasma samples of patients with MetS compared to the healthy volunteers. Additionally, we also predicted 379 potential target genes and subsequently carried out enrichment analysis and protein-protein interaction network analysis to investigate the signaling pathways and functions of the identified DEMs as well as the interactions between their target genes. Furthermore, we selected two upregulated and top 10 downregulated DEMs with the highest |log2FC| values as the key microRNAs, which may serve as potential biomarkers for MetS. RT-qPCR was performed to validated these result. Finally, hsa-miR-526b-5p, hsa-miR-6516-5p was identified as the novel biomarkers for MetS.


Assuntos
Síndrome Metabólica , MicroRNAs , Transcriptoma/genética , Biomarcadores/sangue , Biologia Computacional , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/genética , MicroRNAs/sangue , MicroRNAs/genética , Mapas de Interação de Proteínas/genética , Análise de Sequência de RNA
12.
BMC Musculoskelet Disord ; 22(1): 575, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162383

RESUMO

BACKGROUND: Our objective was to obtain normal patellofemoral measurements to analyse sex and individual differences. In addition, the absolute values and indices of tibial tuberosity-trochlear groove (TT-TG) distances are still controversial in clinical application. A better method to enable precise prediction is still needed. METHODS: Seventy-eight knees of 78 participants without knee pathologies were included in this cross-sectional study. A CT scan was conducted for all participants and three-dimensional knee models were constructed using Mimics and SolidWorks software. We measured and analysed 19 parameters including the TT-TG distance and dimensions and shapes of the patella, femur, tibia, and trochlea. LASSO regression was used to predict the normal TT-TG distances. RESULTS: The dimensional parameters, TT-TG distance, and femoral aspect ratio of the men were significantly larger than those of women (all p values < 0.05). However, after controlling for the bias from age, height, and weight, there were no significant differences in TT-TG distances and anterior-posterior dimensions between the sexes (all p values > 0.05). The Pearson correlation coefficients between the anterior femoral offset and other indexes were consistently below 0.3, indicating no relationship or a weak relationship. Similar results were observed for the sulcus angle and the Wiberg index. Using LASSO regression, we obtained four parameters to predict the TT-TG distance (R2 = 0.5612, p < 0.01) to achieve the optimal accuracy and convenience. CONCLUSIONS: Normative data of patellofemoral morphology were provided for the Chinese population. The anterior-posterior dimensions of the women were thicker than those of men for the same medial-lateral dimensions. More attention should be paid to not only sex differences but also individual differences, especially the anterior condyle and trochlea. In addition, this study provided a new method to predict TT-TG distances accurately.


Assuntos
Instabilidade Articular , Articulação Patelofemoral , China , Estudos Transversais , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Patela/diagnóstico por imagem , Articulação Patelofemoral/diagnóstico por imagem , Tíbia/diagnóstico por imagem
13.
DNA Cell Biol ; 40(1): 61-69, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33185492

RESUMO

Osteonecrosis of the femoral head (ONFH) is a common and destructive orthopedic disease, of which the pathogenesis mechanism remains elusive. Limited studies have been conducted to investigate the role of circular RNAs (circRNAs) in subchondral bone in ONFH. This study aimed to profile differential expression of circRNAs and messenger RNAs (mRNAs) in subchondral bone obtained from ONFH patients by next-generation sequencing, and explore the potential regulatory relationship of these molecules in ONFH by bioinformatics analysis. As a result, we detected 74 aberrantly expressed circRNAs and 121 differentially expressed mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated several vital biological processes and signaling pathways, which are primarily related to osteogenic capacity influenced by osteoblasts and osteoclasts. Furthermore, attempting construction of protein-protein interaction network with 57 aberrant genes and competing endogenous RNA network with 3 selected circRNAs preliminarily revealed the regulatory roles and the relationships of these molecules in ONFH. In addition, the potential association of circRNAs in our networks with the molecular mechanism of ONFH was validated by real time-quantitative PCR. In conclusion, our findings may promote understanding the mechanism of ONFH, and offer a novel insight into early diagnosis and intervention of ONFH.


Assuntos
Necrose da Cabeça do Fêmur/genética , Redes Reguladoras de Genes , RNA Circular/genética , RNA Mensageiro/genética , Transcriptoma , Humanos , RNA Circular/metabolismo , RNA Mensageiro/metabolismo
14.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374344

RESUMO

In this study, we improved the photovoltaic (PV) properties and storage stabilities of inverted perovskite solar cells (PVSCs) based on methylammonium lead iodide (MAPbI3) by employing bathocuproine (BCP)/poly(methyl methacrylate) (PMMA) and BCP/polyvinylpyrrolidone (PVP) as hole-blocking and electron-transporting interfacial layers. The architecture of the PVSCs was indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/MAPbI3/[6,6]-phenyl-C61-butyric acid methyl ester/BCP based interfacial layer/Ag. The presence of PMMA and PVP affected the morphological stability of the BCP and MAPbI3 layers. The storage-stability of the BCP/PMMA-based PVSCs was enhanced significantly relative to that of the corresponding unmodified BCP-based PVSC. Moreover, the PV performance of the BCP/PVP-based PVSCs was enhanced when compared with that of the unmodified BCP-based PVSC. Thus, incorporating hydrophobic polymers into BCP-based hole-blocking/electron-transporting interfacial layers can improve the PV performance and storage stability of PVSCs.

15.
Front Genet ; 11: 988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101363

RESUMO

In the current study, we aimed to identify potential biomarkers for salt sensitivity of blood pressure (SSBP), which may provide a novel insight into the pathogenic mechanisms of salt-sensitive hypertension. Firstly, we conducted weighted gene coexpression network analysis (WGCNA) and selected a gene module and 60 hub genes significantly correlated to SSBP. Then, GO function and KEGG signaling pathway enrichment analysis and protein-protein interaction (PPI) network analysis were performed. Furthermore, we identified a five-gene signature with high connectivity degree in the PPI network and high AUC of ROC curves, which may have high diagnosis value for SSBP. Moreover, through combining two gene screening methods, we identified 23 differentially expressed circRNAs and selected the top 5% circRNAs (1 circRNA) with the highest connectivity degree in the coexpression network as hub circRNA highly associated with SSBP. Finally, we carried out RT-qPCR to validate the expression of five hub genes, and our results showed that the expression of HECTD1 (P = 0.017), SRSF5 (P = 0.003), SRSF1 (P = 0.006), HERC2 (P = 0.004), and TNPO1 (P = 0.002) was significantly upregulated in the renal tissue in salt-sensitive rats compared to salt-resistant rats, indicating that these five hub genes can serve as potential biomarkers for SSBP.

16.
BMC Nephrol ; 21(1): 396, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928127

RESUMO

BACKGROUND: Minimal change disease (MCD) is one of the major causes of nephrotic syndrome (NS). A confirmed MCD diagnosis mainly depends on renal biopsy at present, which is an invasive procedure with many potential risks. The overall incidence of complications caused by renal biopsy procedures has been reported as approximately 11 and 6.6% outside and within China, respectively. Unfortunately, there is currently no noninvasive procedure or practical classification method for distinguishing MCD from other primary glomerular diseases available. METHOD: A total of 1009 adult patients who underwent renal biopsy between January 2017 and November 2019 were enrolled in this study. Twenty-five parameters extracted from patient demographics, clinical manifestations, and laboratory test results were statistically analysed. LASSO regression analysis was further performed on these parameters. The parameters with the highest area under the curve (AUC) were selected and used to establish a logistic diagnostic prediction model. RESULTS: Of the 25 parameters, 14 parameters were significantly different (P < 0.05). MCD patients were mostly younger (36 (22, 55) vs. 41 (28.75, 53)) and male (59% vs. 52%) and had lower levels of diastolic blood pressure (DBP) (79 (71, 85.5) vs. 80 (74, 89)) and IgG (5.42 (3.17, 6.36) vs. 9.38 (6.79, 12.02)) and higher levels of IgM (1.44 (0.96, 1.88) vs. 1.03 (0.71, 1.45)) and IgE (160 (46.7, 982) vs. 47.3 (19, 126)) than those in the non-MCD group. Using the LASSO model, we established a classifier for adults based on four parameters: DBP and the serum levels of IgG, IgM, IgE. We were able to clinically classify adult patients with NS into MCD and non-MCD using this model. The validation accuracy of the logistic regression model was 0.88. A nomogram based on these four classifiers was developed for clinical use that could predict the probability of MCD in adult patients with NS. CONCLUSIONS: A LASSO model can be used to distinguish MCD from other primary glomerular diseases in adult patients with NS. Combining the model and the nomogram potentially provides a novel and valuable approach for nephrologists to diagnose MCD, avoiding the complications caused by renal biopsy.


Assuntos
Pressão Sanguínea , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Nefrose Lipoide/diagnóstico , Síndrome Nefrótica/diagnóstico , Adulto , Área Sob a Curva , Complemento C1q/metabolismo , Complemento C3/metabolismo , Complemento C4/metabolismo , Diástole , Feminino , Taxa de Filtração Glomerular , Hemoglobinas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Nefrose Lipoide/sangue , Nefrose Lipoide/complicações , Síndrome Nefrótica/sangue , Síndrome Nefrótica/etiologia , Nomogramas , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
17.
Cancer Sci ; 111(8): 2861-2871, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32350953

RESUMO

Tumor metastasis is the dominant cause of death in colorectal cancer (CRC) patients, and it often involves dysregulation of various cytoskeletal proteins. Plastin 1 (PLS1) is an actin-bundling protein that has been implicated in the structure of intestinal epithelial microvilli; however, its role in CRC metastasis has not yet been determined. In this study, we demonstrated that PLS1 is highly expressed in 33.3% (45/135) of CRC patients and is correlated with lymph node metastasis and poor survival. In in vitro and in vivo experiments, PLS1 induced the migration and invasion of CRC cells and the metastases to the liver and lung in mice. Moreover, the expressions of key factors for CRC metastases, matrix metalloproteinase (MMP) 9 and 2, were enhanced by PLS1, which was dependent on phosphorylating ERK1/2 activated by IQGAP1/Rac1 signaling. The connection between these signals and PLS1 was further confirmed in CRC tissues of patients and the metastatic nodules from a mouse model. These findings suggest that PLS1 promotes CRC metastasis through the IQGAP1/Rac1/ERK pathway. Targeting PLS1 may provide a potential approach to inhibit the metastasis of CRC cells.


Assuntos
Neoplasias Colorretais/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Mucosa Intestinal/patologia , Mucosa Intestinal/cirurgia , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Reto/patologia , Reto/cirurgia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
18.
J Cell Physiol ; 235(11): 8129-8140, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951022

RESUMO

Traumatic osteonecrosis of femoral head (TONFH) is a common orthopedic disease caused by physical injury in hip. However, the unclear pathogenesis mechanism of TONFH and lacking of simple noninvasive early diagnosis method cause the necessity of hip replacement for most patients with TONFH. In this study, we aimed to identify circulating microRNAs (miRNAs) by integrated bioinformatics analyses as potential biomarker of TONFH. mRNA expression profiles were downloaded from the Gene Expression Omnibus database. Then we combined two miRNA screen methods: Weighted gene co-expression network analysis and fold change based differentially expressed miRNAs analysis. As a result, we identified 14 key miRNAs as potential biomarkers for TONFH. Besides, 302 target genes of these miRNAs were obtained and the miRNA-mRNA interaction network was constructed. Furthermore, the results of Kyoto Encyclopedia of Gene and Genome pathway analysis, Gene Ontology function analysis, protein-protein interaction (PPI) network analysis and PPI network module analysis showed close correlation between these 14 key miRNAs and TONFH. Then we established receiver operating characteristic curves and identified 6-miRNA signature with highly diagnosis value including miR-93-5p (area under the curve [AUC] = 0.93), miR-1324 (AUC = 0.92), miR-4666a-3p (AUC = 0.92), miR-5011-3p (AUC = 0.92), and miR-320a (AUC = 0.89), miR-185-5p (AUC = 0.89). Finally, the results of quantitative real-time polymerase chain reaction confirmed the significantly higher expression of miR-93-5p and miR-320a in the serum of patients with ONFH. These circulating miRNAs could serve as candidate early diagnosis markers and potential treatment targets of TONFH.


Assuntos
Biomarcadores/sangue , MicroRNA Circulante/genética , MicroRNAs/genética , Osteonecrose/diagnóstico , Adulto , MicroRNA Circulante/sangue , Biologia Computacional , Feminino , Cabeça do Fêmur/lesões , Cabeça do Fêmur/fisiopatologia , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Análise em Microsséries , Pessoa de Meia-Idade , Osteonecrose/sangue , Osteonecrose/genética , Osteonecrose/fisiopatologia , Mapas de Interação de Proteínas/genética
19.
J Cell Biochem ; 120(12): 19891-19901, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31338874

RESUMO

By differentiating into and the balance being regulated between M1 (pro-inflammatory) and M2 (anti-inflammatory) heterogeneous populations, macrophages play critical roles during the host immune response in various physiological contexts in both health and diseases. Besides regulating innate and adaptive immune capacity, macrophages are also decisively involved in tissue homeostasis. However, how resident macrophages are regulated after tissue damages is still far from elucidation. In the present study, we found that adipose-derived stem cells (ADSCs) apparently promote bone defect rehabilitation in vivo via skewing differentiation of bone marrow-derived macrophage (BMDMs) towards anti-inflammatory M2 macrophages. In vitro data demonstrated that although ADSCs have the potential to differentiate to osteoblasts and adipose cells by using standard tissue culture-differentiating conditions, these mesenchymal progenitors are mainly regulated to differentiate into osteoblasts with overexpressed runt-related transcription factor 2, osteoprotegerin, osterix, and downregulated receptor activator of nuclear factor κB ligand in the presence of BMDMs-conditioned medium. Whereas BMDMs are polarized toward M2 macrophages with higher levels of arginase 1 and mannose receptor, but lower levels of inducible nitric oxide synthase and tumor necrosis factor-α when cocultured with ADSCs. In short, all these findings collectively demonstrated that ADSCs and resident host cells can synergistically contribute to the bony repair through mutual regulation of their differentiation and cytokine secretion.


Assuntos
Fêmur/lesões , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Animais , Células da Medula Óssea/fisiologia , Diferenciação Celular , Polaridade Celular , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Macrófagos/fisiologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Osteoprotegerina/metabolismo , Fator de Transcrição Sp7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA