Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 976-985, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382380

RESUMO

Thermosensitive hydrogels have found extensive applications in soft devices, but they often suffer from limited functionalities, low response rate and small response amplitude. In this work, double layered asymmetrical hydrogels composed of a thermosensitive layer and a non-thermosensitive layer are developed to simultaneously achieve high-performance mechanosensing and actuating properties in a single hydrogel. In thermosensitive layer, thermosensitive microgels are introduced to construct hierarchical structure, which accounts for the enhanced thermosensitive behaviors by cooperative responsiveness. In non-thermosensitive layer, poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel is constructed. KCl is introduced as conductive component. Mechanosensors for monitoring various mechanical stimuli in daily life have been fabricated utilizing such hydrogels and high gauge factors (GF) have been achieved, 0.38 for resistive strain sensors, 9.40 kPa-1 for piezoresistive pressure sensors and 3.92 kPa-1 for capacitive pressure sensors. Because of the asymmetrical structure, such hydrogels also exhibit outstanding actuating properties with a fast response rate of 863°/min and a bending amplitude about 360°. Interestingly, grasping-releasing of target objects utilizing an octopus-shaped hydrogel actuator and temperature alerting based on hydrogel actuator are also demonstrated. Overall, the double layered asymmetrical ionic hydrogels have provided a new clue to construct hydrogel devices with multiple functionalities and enhanced response properties.

2.
ACS Appl Mater Interfaces ; 16(6): 7768-7779, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294427

RESUMO

Hydrogels are increasingly used in flexible electronic devices, but the mechanical and electrochemical stabilities of hydrogel devices are often limited under specific harsh conditions. Herein, chemically/physically cross-linked double-network (DN) hydrogels containing binary cations Zn2+ and Li+ are constructed in order to address the above challenges. Double networks of chemically cross-linked polyacrylamide (PAM) and physically cross-linked κ-Carrageenan (κ-CG) are designed to account for the mechanical robustness while binary cations endow the hydrogels with excellent ionic conductivity and outstanding environmental adaptability. Excellent mechanical robustness and ionic conductivity (25 °C, 2.26 S·m-1; -25 °C, 1.54 S·m-1) have been achieved. Utilizing the DN hydrogels containing binary cations as signal-converting materials, we fabricated flexible mechanosensors. High gauge factors (resistive strain sensors, 2.4; capacitive pressure sensors, 0.82 kPa-1) and highly stable sensing ability have been achieved. Interestingly, zinc-ion hybrid supercapacitors containing the DN hydrogels containing binary cations as electrolytes have achieved an initial capacity of 52.5 mAh·g-1 at a current density of 3 A·g-1 and a capacity retention rate of 82.9% after 19,000 cycles. Proper working of the zinc-ion hybrid supercapacitors at subzero conditions and stable charge-discharge for more than 19,000 cycles at -25 °C have been demonstrated. Overall, DN hydrogels containing binary cations have provided promising materials for high-performance flexible electronic devices under harsh conditions.

3.
ACS Appl Mater Interfaces ; 14(27): 31225-31233, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762451

RESUMO

Electronic skins (e-skins) are increasingly investigated and applied in wearable devices, but the robustness and convenient production of traditional e-skins are restricted. In this work, electrospun sandwich-structured elastic films (ESEFs) are developed and utilized as capacitive e-skins. The ESEFs consist of two nanocomposite mats as the electrode layers and a sandwiched thermoplastic polyurethane (TPU) mat as the dielectric layer. The nanocomposite mats are composed of thermoplastic polyurethane (TPU) and AgNW-bridged MXene (AgNW, silver nanowire; MXene, Ti3C2Tx) conductive network. The resulting ESEFs achieve a tensile strength of 14.80 MPa, an elongation at break of 270%, and an outstanding antifatigue property. E-skins of such ESEFs have the ability to respond to both strain and pressure with a high gauge factor (GF) (strain: GF = 1.21; pressure: GF = 0.029 kPa-1), wide response range (strain: 0-150%; pressure: 0-70 kPa), low response time, and outstanding stability (2000 cycles). On the basis of integrated sensing performances, such e-skins are further applied in monitoring various mechanical stimuli in daily life, including bending of a plastic plate, joint bending, and swallowing.

4.
Adv Sci (Weinh) ; 9(17): e2200840, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411708

RESUMO

Exploring new materials and methods to achieve high utilization of sulfur with lean electrolyte is still a common concern in lithium-sulfur batteries. Here, high-density oxygen doping chemistry is introduced for making highly conducting, chemically stable sulfides with a much higher affinity to lithium polysulfides. It is found that doping large amounts of oxygen into NiCo2 S4 is feasible and can make it outperform the pristine oxides and natively oxidized sulfides. Taking the advantages of high conductivity, chemical stability, the introduced large Li-O interactions, and activated Co (Ni) facets for catalyzing Sn 2- , the NiCo2 (O-S)4 is able to accelerate the Li2 S-S8 redox kinetics. Specifically, lithium-sulfur batteries using free-standing NiCo2 (O-S)4 paper and interlayer exhibit the highest capacity of 8.68 mAh cm-2 at 1.0 mA cm-2 even with a sulfur loading of 8.75 mg cm-2 and lean electrolyte of 3.8 µL g-1 . The high-density oxygen doping chemistry can be also applied to other metal compounds, suggesting a potential way for developing more powerful catalysts towards high performance of Li-S batteries.

5.
Curr Pharm Biotechnol ; 23(8): 1080-1093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636307

RESUMO

BACKGROUND: Sleep curtailment is a serious problem in many societies. Clinical evidence has shown that sleep deprivation is associated with mood dysregulation, formation of false memory, cardio-metabolic risk factors and outcomes, inflammatory disease risk, and all-cause mortality. The affective disorder dysregulation caused by insufficient sleep has become an increasingly serious health problem. However, to date, not much attention has been paid to the mild affective dysregulation caused by insufficient sleep, and there is no clear and standard therapeutic method to treat it. The Xiaoyao Pill is a classic Chinese medicinal formula, with the effect of dispersing stagnated hepatoqi, invigorating the spleen, and nourishing the blood. Therefore, it is most commonly used to treat gynecological diseases in China. In the present study, the effects of the Xiaoyao Pill on affective dysregulation of sleep-deprived mice and its underlying molecular mechanisms were investigated. METHODS: Forty adult female mice were used in the present study. The sleep deprivation model was established by improving the multi-platform water environment method. After 7 consecutive days of sleep deprivation, the mice were administrated low (LXYP, 0.32mg/kg) and high (HXYP, 0.64 mg/kg) doses of the Xiaoyao Pill for two weeks. Then, the body weight, behavioral deficits, and histopathology were evaluated. Meanwhile, the expression of c-fos protein and the concentrations of monoamine neurotransmitters in the hippocampus and prefrontal cortex were determined after two weeks of treatment. RESULTS: Xiaoyao Pill treatment significantly increased body weight and sucrose consumption and decreased the irritability scores of the sleep-deprived mice. Meanwhile, Xiaoyao Pill treatment prevented brain injury and inhibited the expression of c-fos protein in the hippocampus and prefrontal cortex. In addition, HXYP treatment significantly upregulated the levels of NE in the hippocampus and prefrontal cortex (p < 0.01). LXYP treatment significantly up-regulated the levels of 5-HT in the prefrontal cortex. Meanwhile, both HXYP and LXYP treatment significantly upregulated the levels of DA in the prefrontal cortex (p < 0.05 or p < 0.01) of sleep-deprived mice. CONCLUSION: The present study demonstrates that Xiaoyao Pill treatment prevented the behavioral deficits of mice induced by sleep deprivation by promoting the recovery of brain tissue injury and up-regulating the levels of NE, 5-HT, and DA in the brain tissue.


Assuntos
Lesões Encefálicas , Privação do Sono , Animais , Peso Corporal , Lesões Encefálicas/metabolismo , Medicamentos de Ervas Chinesas , Feminino , Hipocampo , Camundongos , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/farmacologia , Serotonina/metabolismo , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo
6.
J Colloid Interface Sci ; 607(Pt 1): 431-439, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509117

RESUMO

Polydopamine (PDA)-based self-adhesive hydrogel sensors are extensively explored but it is still a challenge to construct PDA-based hydrogels by free radical polymerization. Herein, a new approach to construct self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase is developed. The following two-phase polymerization processes account for the formation of the self-adhesive hydrogels. The first one is the polymerization of acrylamide (AM) and dopamine (DA) in aqueous phase to form adhesive component PAM-PDA (PAM, polyacrylamide; PDA, polydopamine). The second one is the polymerization of hydrophobic monomer 2-methoxyethyl acrylate (MEA) in micelles of an amphiphilic block copolymer Pluronic F127 diacrylate (F127DA). The poly(2-methoxyethyl acrylate) (PMEA) networks help to maintain the high robustness of the hydrogel. Because PMEA and PDA form in relatively separated phases, the inhibition effect of PDA on the free radical polymerization process of PMEA is weakened. Based on this mechanism, mechanically strong and adhesive hydrogels are achieved. The introduced ions during preparation process, such as Na+, OH- and K+, endow the resulting hydrogels ionic conductivity. Resistive strain sensor of the hydrogel achieves a high gauge factor (GF) of 5.26, a response time of 0.25 s and high sensing stability. Because of the adhesiveness, such hydrogel sensor can be applied as wearable sensors in monitoring various human motions. To further address the freezing and drying problems of the hydrogels, organohydrogels are constructed in glycerol-water mixed solvent. The organohydrogels exhibit outstanding anti-freezing property and moisture retention ability, and their adhesiveness is well maintained in subzero conditions. Capacitive pressure sensors of the organohydrogels possessing a GF of 2.05 kPa-1, high sensing stability and reversibility, are demonstrated and explored in monitoring diverse human motions.


Assuntos
Adesivos , Hidrogéis , Radicais Livres , Humanos , Micelas , Polimerização , Cimentos de Resina , Água
7.
ACS Appl Mater Interfaces ; 13(26): 31010-31020, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160200

RESUMO

The development of high-performance protein-imprinted materials is vital to meet the requirements of proteomics research but remains a challenge. Herein, a new type of raspberry-like cytochrome C-imprinted nanoparticle was first designed and fabricated via surface imprinting technology combined with a template immobilization strategy. In particular, the state-of-the-art metal-organic framework (MOF)/carbon nanoparticle (CN) composites were selected as protein immobilization carriers for two advantages: (1) the composites reflected the intrinsic characteristics of MOFs including flexible design, facile preparation, and extensive interactions with proteins and (2) the utilization of composites also overcame the issue associated with the severe agglomeration of individual MOFs during the post-use process. Therefore, the as-prepared composites exhibited a regular raspberry-like shape with good dispersion (polydispersity index (PDI) < 0.25), high specific surface area (551.4 m2 g-1), and outstanding cytochrome C immobilization capacity (900 mg g-1). Furthermore, a zwitterionic monomer was chosen to participate in the synthesis of an imprinting layer to reduce the nonspecific binding with proteins. As a result, the unique design presented here in both the protein immobilization carrier and the selected polymer composition endowed the imprinted material (noted as CN@UIO-66@MIPs) with the excellent ability for cytochrome C enrichment with extremely high recognition ability (imprinting factor (IF) = 6.1), rapid adsorption equilibrium time (40 min), and large adsorption capacity (815 mg g-1). Furthermore, encouraged by the experimental results, we successfully used CN@UIO-66@MIPs to specifically capture cytochrome C in mixed protein solutions and biological samples, which proved them to be a potential candidate for protein separation and purification.


Assuntos
Citocromos c/isolamento & purificação , Estruturas Metalorgânicas/química , Polímeros Molecularmente Impressos/química , Nanopartículas/química , Adsorção , Animais , Carbono/química , Fracionamento Químico/métodos , Citocromos c/química , Cinética , Compostos Organometálicos/química , Ácidos Ftálicos/química , Ratos
8.
ACS Appl Mater Interfaces ; 13(1): 1441-1451, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33397087

RESUMO

Highly sensitive capacitive-type pressure sensor has been achieved by fabricating reliefs on solution-processable hydrogel electrodes. Hybrid PVA/PANI hydrogels (PVA, poly(vinyl alcohol); PANI, polyaniline) with a fully physically cross-linked binary network are selected as the electrodes of the pressure sensors. On the basis of the solution processability, reliefs are fabricated on the surface of PVA/PANI hydrogel electrodes by a template method. The gauge factor (GF) is enhanced by introducing reliefs and regulated by controlling the composition and relief dimension of hydrogel electrodes. The optimized pressure sensor containing reliefs achieves the highest GF of 7.70 kPa-1 and a sensing range of 0-7.4 kPa. Furthermore, the freezing and drying problems of the hydrogel sensors are overcome by introducing a binary solvent of water/glycerol and the pressure sensing ability at -18 °C has been achieved. Finally, monitoring of various pressures in daily life, such as joint bending, blowing, and brush writing, is demonstrated using such pressure sensors.

9.
Front Nutr ; 8: 829146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127800

RESUMO

Moringa (Moringa oleifera) seed oil is an edible vegetable oil rich in unsaturated fatty acids. In this study, the supercritical CO2 fluid extraction method was employed to obtain the maximum yield of moringa seed oil. The effects of temperature, time, and pressure, three characteristics of extractions, on the extraction rate of Moringa seed oil were investigated by single factor test and response surface methodological approach. The optimal process conditions of supercritical CO2 fluid extraction of moringa seed oil were determined as extraction temperature of 45°C, extraction time of 2.5 h, extraction pressure of 50 MPa, and CO2 flow rate of 240 L/h, resulting in a maximum yield of 38.54%. Composition analysis shows that the extracted moringa seed oil is rich in unsaturated fatty acids, including oleic acid, octadecanoic acid, palmitic acid, stearic acid, eicosanoic acid, etc. Furthermore, we found that Moringa seed oil exerted potent antioxidant activities on DPPH and hydroxyl radicals, and its efficacy was comparable to commercial peanut oil and tea oil. Overall, this novel extraction method of moringa seed oil may increase its potential value and application in the food and nutraceutical industries.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118784, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799194

RESUMO

A novel dual-channel chemosensor, 7-allylquinolin-8-ol (AQ), was synthesized based on 8-hydroxyquinoline for selective fluorescence detection of Hg2+ and colorimetric recognition of Cu2+. The chemosensor reacted with Hg2+ and generated a new Hg-containing compound with significantly enhanced fluorescence, which turned from faint blue to strong green. Further experiments indicated that AQ could be used to quantitatively detect Hg2+ via fluorescence spectroscopy with a low detection limit (2.1 nM). The good reversibility of the synthesized chemosensor was also demonstrated using NaBH4. Moreover, AQ was successfully used for the detection of Cu2+ through the formation of a stable coordination compound, which exhibited an ultraviolet-visible (UV-Vis) ratiometric change, while its color changed from colorless to pale yellow under natural light. Additional experiments using various Cu2+ concentrations showed that the developed chemosensor could be further employed for the quantitative ratiometric estimation of Cu2+ by UV-Vis.

11.
Talanta ; 217: 121085, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498866

RESUMO

Constructing imprinting materials with high recognition and selectivity for protein is an always challenge in protein imprinting technology (PIT). In this work, upon the participating of a zwitterionic polymer chain (Poly (1-vinyl-3-sulfopropylimidazolium), PVSP), a lysozyme imprinted core-shell carbon microsphere (CFC-PVSP@MIPs) was prepared by combining template immobilization method and surface imprinting technology. The carboxyl-functionalized carbon microspheres as substrate provided the CFC-PVSP@MIPs satisfactory adsorption capacity (68.1 mg g-1), while the dopamine as a functional monomer and crosslinker allowed the imprinted microspheres to have a thin imprinted shell, thus endowing them a fast adsorption equilibrium rate (120 min). In addition, PVSP could be tightly bound to the imprinted layer through non-covalent interaction, which not only simplified the preparation process of CFC-PVSP@MIPs, but also reduced the non-specific adsorption of imprinted material on proteins. Therefore, the resulting CFC-PVSP@MIPs exhibited a more superior recognition ability towards lysozyme with imprinting factor value of 3.10, compared with the PVSP-free imprinted microsphere (imprinting factor value 1.93). Furthermore, benefiting from the characteristics of zwitterionic groups, CFC-PVSP@MIPs also revealed stronger selectivity in competitive adsorption studies of binary protein mixture samples. Consequently, the proposed strategy would be a promising and convenient way to obtain protein imprinted material with high recognition ability, thus would be conducive to further development and application of PIT.

12.
ACS Appl Mater Interfaces ; 12(13): 15228-15238, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159320

RESUMO

Lithium-sulfur (Li-S) batteries are highly attractive for their theoretical energy density and natural abundance, but the drawbacks of low sulfur utilization and rapid capacity fade in high-sulfur-loading cathodes still retard their practical use. To enhance kinetics in high-sulfur-loading Li-S cells, it is important to first understand and control the deposition of Li2S/Li2S from highly soluble lithium polysulfide (LiPS) during discharge processes. Here, we presented a series of multiphase-derived self-standing papers with diverse electronic conductivity and LiPS affinity for highly concentrated LiPS discharge processes and explained the Li2S/Li2S deposition behavior in detail. We demonstrated that high rate capacity and long cycle life of as-assembled paper-LiPS cathodes can be greatly depended on their phase material with high conductivity and LiPS affinity. A high-performance self-standing LiPS host-multiwalled carbon nanotube (MWCNT)/cellulose nanofiber (CNF)/NiCo2S4 (3.5 mg cm-2) can catalyze 2.85 mg cm-2 (based on sulfur) loaded LiPS to deliver a high specific capacity of 1154 mAh g-1 at 0.1C and a high rate performance of 963 mAh g-1 at 1C. We suggest that the insulating phase defect of nano-CNF and both highly electronic conductive (above 50 S cm-1) and LiPS adsorptive NiCo2S4 can promote the local concentration effect of LiPS, thus contributing to fast and stable heterogeneous particle-shaped deposition of Li2S2/Li2S and leading to high kinetics of the LiPS cathode.

13.
ACS Appl Mater Interfaces ; 11(43): 40613-40619, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31588725

RESUMO

Flexible sensors (FSs) are the key components of intelligent equipment and wearable devices, thus attracting increasing research interests in recent years. However, the preparation of multifunctional FS with good degradability in a natural environment is still challenging. In this work, we fabricated a flexible multimodal sensor that can detect multiple stimuli with only one device by spraying the mixture of carbon black (CB) and reduced graphene oxide (rGO) on a paper substrate. Scanning electron microscopy visualization indicated the CB particles absorbed on the surface of rGO, which then overlayered together, constructing a hierarchical structure. Benefiting from this unique structure, the obtained FS was demonstrated to have good sensitivity for strain, humidity, temperature, and pressure as well as multiple stimuli and was used to monitor human respirations as well as body motions, such as finger and elbow bending and head nodding. Besides, the sensor can be easily degraded in water being free of electronic pollution, but it also can be reused after the soaking-drying process, implying its reliability. This degradable and multimodal FS may find great potential in flexible electronics.

14.
ACS Appl Mater Interfaces ; 11(29): 26412-26420, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31257857

RESUMO

Ionogels are ideal candidate materials for flexible sensors, but their stretchability and fatigue resistance are limited. Herein, highly stretchable, fatigue-resistant, electrically conductive, and temperature-tolerant ionogels are investigated and further applied in fabricating high-performance flexible sensors. The ionogels consist of a poly(acrylic acid) (PAA) network and a commonly used room-temperature ionic liquid (RTIL) named 1-ethyl-3-methylimidazolium dicyanamide ([EMIm][DCA]). Dually acrylated Pluronic F127 (F127DA) was utilized to cross-link the PAA network, and [EMIm][DCA] was physically confined in the PAA network. Because of their special cross-linking structure, the PAA ionogels are highly stretchable (>850%), tough, and fatigue-resistant, and they are also conductive, transparent, and temperature-tolerant because of the existence of [EMIm][DCA]. On the basis of their integrated performances, the PAA ionogels were further utilized to fabricate strain sensors and pressure sensors. The ionogel-based strain sensors have high sensitivity, low response time (200 ms), wide strain-sensing range (0-750%), excellent durability (>1400 cycles), and good temperature tolerance and can be applied to detect various human motions. The pressure sensors also have a high response speed (256 ms) and excellent sensitivity (GF = 0.73 kPa-1), which offers an opportunity to detect force generated by finger touching and water droplets.

15.
Dev Cell ; 49(4): 574-589.e5, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31006650

RESUMO

The effect of intracellular vesicle trafficking on stem-cell behavior is largely unexplored. We screened the Drosophila sorting nexins (SNXs) and discovered that one, SH3PX1, profoundly affects gut homeostasis and lifespan. SH3PX1 restrains intestinal stem cell (ISC) division through an endocytosis-autophagy network that includes Dynamin, Rab5, Rab7, Atg1, 5, 6, 7, 8a, 9, 12, 16, and Syx17. Blockages in this network stabilize ligand-activated EGFRs, recycling them via Rab11-dependent endosomes to the plasma membrane. This hyperactivated ERK, calcium signaling, and ER stress, autonomously stimulating ISC proliferation. The excess divisions induced epithelial stress, Yki activity, and Upd3 and Rhomboid production in enterocytes, catalyzing feedforward ISC hyperplasia. Similarly, blocking autophagy increased ERK activity in human cells. Many endocytosis-autophagy genes are mutated in cancers, most notably those enriched in microsatellite instable-high and KRAS-wild-type colorectal cancers. Disruptions in endocytosis and autophagy may provide an alternative route to RAS-ERK activation, resulting in EGFR-dependent cancers.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Receptores ErbB/metabolismo , Mucosa Intestinal/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores de Peptídeos de Invertebrados/metabolismo , Células-Tronco/citologia , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Drosophila melanogaster/metabolismo , Endocitose , Endossomos/metabolismo , Mucosa Intestinal/metabolismo , Transporte Proteico , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais/fisiologia , Nexinas de Classificação/metabolismo , Células-Tronco/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
16.
Carbohydr Polym ; 210: 350-363, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30732771

RESUMO

Cellulose paper derived from plants has served as a carrier of cultural inheritance since it was invented 2000 years ago. It attracted more and more attentions in recent years working as a versatile platform to develop functional materials because of its good flexibility, sustainability, biodegradability, low cost and great capability to be modified. Once be functionalized, such as modified with stimuli-responsive polymers, small molecules or inorganic particles, papers may be sensitive to external stimuli from environments and consequently find applications in wide ranges including protein separation, controlled drug release, switchable surfaces, sensoring devices and smart substrates with various colors, etc. However, there are no reviews summarized the progress of such exciting research field. Here in this mini review, we discussed the advantages of cellulose paper as stimuli-responsive substrate and summarized the fabrication techniques, properties and applications of various stimuli-responsive papers reported to date which are triggered by temperature, pH, humidity, ions, light, magnetic field, solvent, gas and biomolecules. Additionally, challenges and outlooks of the future development of such materials were also given in the end.

17.
PLoS One ; 13(8): e0198750, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30075032

RESUMO

Based on chronological and archaeobotanical studies of 15 Neolithic and Bronze Age sites from the northern Chinese Loess Plateau and southern Inner Mongolia-the agro-pastoral zone of China-we document changes in the agricultural system over time. The results show that wheat and rice were not the major crops of the ancient agricultural systems in these areas, since their remains are rarely recovered, and that millet cultivation was dominant. Millet agriculture increased substantially from 3000 BC-2000 BC, and foxtail millet evidently comprised a high proportion of the cultivated crop plants during this period. In addition, as the human population increased from the Yangshao to the Longshan periods, the length and width of common millet seeds increased by 20-30%. This demonstrates the co-evolution of both plants and the human population in the region. Overall, our results reveal a complex agricultural-gardening system based on the cultivation of common millet, foxtail millet, soybeans and fruit trees, indicating a high food diversity and selectivity of the human population.


Assuntos
Agricultura/história , Arqueologia , Evolução Biológica , Produtos Agrícolas , Clima Desértico , Animais , Osso e Ossos/química , Produtos Agrícolas/classificação , Produtos Agrícolas/provisão & distribuição , História Antiga , Atividades Humanas/história , Humanos , Datação Radiométrica
18.
Nano Lett ; 18(7): 4180-4187, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29902011

RESUMO

Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.


Assuntos
Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/administração & dosagem , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/efeitos adversos , Dextranos/administração & dosagem , Dextranos/química , Humanos , Metacrilatos/administração & dosagem , Metacrilatos/química , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Nanopartículas/química , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Enterococos Resistentes à Vancomicina/patogenicidade
19.
Angew Chem Int Ed Engl ; 57(22): 6536-6540, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29635726

RESUMO

Tetrahomocorona[2]arene[2]tetrazines were constructed by means of a fragment coupling strategy based on nucleophilic aromatic substitution reaction starting from 3,6-dichlorotetrazine and o-, m-, and p-bis(hydroxymethyl)benzenes. The unprecedented macrocycles gave rectangular box-like cavities with tunable cavity sizes and deficient electronic properties depending on the substitution pattern of phenylene. Due to anion-π interactions, they formed complexes selectively with azide and thiocyanate owing to complementary shapes between host and guest.

20.
ACS Appl Mater Interfaces ; 10(16): 14045-14054, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29608268

RESUMO

The first example of dually synergetic network hydrogel, which has integrated mechanical stretchability, thermal responsiveness, and electrical conductivity, has been constructed by a versatile and topological co-cross-linking approach. Poly( N-isopropylacrylamide) (PNIPAAm) is introduced as the thermally responsive ingredient, and polyaniline (PANI) is selected as the electrically conductive ingredient. PNIPAAm network is cross-linked by double-bond end-capped Pluronic F127 (F127DA). PANI network is doped and cross-linked by phytic acid. These two ingredients are further mechanically interlocked. Due to the integrated multiple functionalities, the topologically co-cross-linked hydrogels, as will be mentioned as F-PNIPAAm/PANI hydrogels, can be fabricated into resistive-type strain sensors. The strain sensors can achieve a gauge factor of 3.92, a response time of 0.4 s, and a sensing stability for at least 350 cycles and can be further applied for monitoring human motions, including motion of two hands, bending of joints, and even swallowing and pulse rate. Moreover, F-PNIPAAm/PANI hydrogels are utilized to construct efficient temperature alertors based on the disconnection of circuits induced by volume shrinkage at high temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA