Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Pharmacol ; 15: 1331138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655174

RESUMO

Background: This study aims to determine the efficacy and safety profile of aumolertinib in the real-word treatment setting for advanced non-small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations. Methods: We retrospectively analyzed the clinical data of 173 EGFR-mutated advanced NSCLC patients who received aumolertinib treatment at Henan Cancer Hospital from April 2020 to December 2022. Progression-free survival (PFS) and overall survival (OS) were evaluated using Kaplan-Meier survival curves, while a Cox regression model was used for multifactorial analysis and prognostic factor assessment. Results: Among patients administered first-line aumolertinib (n = 77), the objective remission rate (ORR) of 77.92% was observed, along with a disease control rate (DCR) of 100%. The median progression-free survival (mPFS) was 24.97 months, which did not reach the median overall survival (mOS). The patients treated with aumolertinib after progression on prior EGFR-tyrosine kinase inhibitor (TKI) therapy (n = 96) exhibited an ORR of 46.88%, a DCR of 89.58%, an mPFS of 15.17 months, and an mOS of 21.27 months. First-line treatment multivariate Cox regression analysis demonstrated a statistically significant impact of elevated creatine kinase on PFS (p = 0.016) and a similar significant influence of co-mutation on OS (p = 0.034). Furthermore, subsequent-line treatment multivariate Cox regression analysis showed a statistically significant impact of elevated creatine kinase on median PFS (p = 0.026) and a significant effect on the number of metastatic organs (p = 0.017), co-mutation (p = 0.035), and elevated creatine kinase (p = 0.014) on median OS. Conclusion: Aumolertinib has shown clinical significance and can safely be used in the real-world setting for patients with EGFR mutation-positive NSCLC.

2.
J Alzheimers Dis ; 96(3): 1267-1283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955086

RESUMO

BACKGROUND: Neuroimaging bears the promise of providing new biomarkers that could refine the diagnosis of dementia. Still, obtaining the pathology data required to validate the relationship between neuroimaging markers and neurological changes is challenging. Existing data repositories are focused on a single pathology, are too small, or do not precisely match neuroimaging and pathology findings. OBJECTIVE: The new data repository introduced in this work, the South Texas Alzheimer's Disease research center repository, was designed to address these limitations. Our repository covers a broad diversity of dementias, spans a wide age range, and was specifically designed to draw exact correspondences between neuroimaging and pathology data. METHODS: Using four different MRI sequences, we are reaching a sample size that allows for validating multimodal neuroimaging biomarkers and studying comorbid conditions. Our imaging protocol was designed to capture markers of cerebrovascular disease and related lesions. Quantification of these lesions is currently underway with MRI-guided histopathological examination. RESULTS: A total of 139 postmortem brains (70 females) with mean age of 77.9 years were collected, with 71 brains fully analyzed. Of these, only 3% showed evidence of AD-only pathology and 76% had high prevalence of multiple pathologies contributing to clinical diagnosis. CONCLUSION: This repository has a significant (and increasing) sample size consisting of a wide range of neurodegenerative disorders and employs advanced imaging protocols and MRI-guided histopathological analysis to help disentangle the effects of comorbid disorders to refine diagnosis, prognosis and better understand neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Feminino , Humanos , Idoso , Doença de Alzheimer/patologia , Texas/epidemiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neuroimagem/métodos , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/patologia , Biomarcadores
3.
Neuroimage Rep ; 3(1)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37035520

RESUMO

Deep learning has been demonstrated effective in many neuroimaging applications. However, in many scenarios, the number of imaging sequences capturing information related to small vessel disease lesions is insufficient to support data-driven techniques. Additionally, cohort-based studies may not always have the optimal or essential imaging sequences for accurate lesion detection. Therefore, it is necessary to determine which imaging sequences are crucial for precise detection. This study introduces a deep learning framework to detect enlarged perivascular spaces (ePVS) and aims to find the optimal combination of MRI sequences for deep learning-based quantification. We implemented an effective lightweight U-Net adapted for ePVS detection and comprehensively investigated different combinations of information from SWI, FLAIR, T1-weighted (T1w), and T2-weighted (T2w) MRI sequences. The experimental results showed that T2w MRI is the most important for accurate ePVS detection, and the incorporation of SWI, FLAIR and T1w MRI in the deep neural network had minor improvements in accuracy and resulted in the highest sensitivity and precision (sensitivity =0.82, precision =0.83). The proposed method achieved comparable accuracy at a minimal time cost compared to manual reading. The proposed automated pipeline enables robust and time-efficient readings of ePVS from MR scans and demonstrates the importance of T2w MRI for ePVS detection and the potential benefits of using multimodal images. Furthermore, the model provides whole-brain maps of ePVS, enabling a better understanding of their clinical correlates compared to the clinical rating methods within only a couple of brain regions.

4.
JAMA Netw Open ; 6(4): e239196, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37093602

RESUMO

Importance: Enlarged perivascular spaces (ePVSs) have been associated with cerebral small-vessel disease (cSVD). Although their etiology may differ based on brain location, study of ePVSs has been limited to specific brain regions; therefore, their risk factors and significance remain uncertain. Objective: Toperform a whole-brain investigation of ePVSs in a large community-based cohort. Design, Setting, and Participants: This cross-sectional study analyzed data from the Atrial Fibrillation substudy of the population-based Multi-Ethnic Study of Atherosclerosis. Demographic, vascular risk, and cardiovascular disease data were collected from September 2016 to May 2018. Brain magnetic resonance imaging was performed from March 2018 to July 2019. The reported analysis was conducted between August and October 2022. A total of 1026 participants with available brain magnetic resonance imaging data and complete information on demographic characteristics and vascular risk factors were included. Main Outcomes and Measures: Enlarged perivascular spaces were quantified using a fully automated deep learning algorithm. Quantified ePVS volumes were grouped into 6 anatomic locations: basal ganglia, thalamus, brainstem, frontoparietal, insular, and temporal regions, and were normalized for the respective regional volumes. The association of normalized regional ePVS volumes with demographic characteristics, vascular risk factors, neuroimaging indices, and prevalent cardiovascular disease was explored using generalized linear models. Results: In the 1026 participants, mean (SD) age was 72 (8) years; 541 (53%) of the participants were women. Basal ganglia ePVS volume was positively associated with age (ß = 3.59 × 10-3; 95% CI, 2.80 × 10-3 to 4.39 × 10-3), systolic blood pressure (ß = 8.35 × 10-4; 95% CI, 5.19 × 10-4 to 1.15 × 10-3), use of antihypertensives (ß = 3.29 × 10-2; 95% CI, 1.92 × 10-2 to 4.67 × 10-2), and negatively associated with Black race (ß = -3.34 × 10-2; 95% CI, -5.08 × 10-2 to -1.59 × 10-2). Thalamic ePVS volume was positively associated with age (ß = 5.57 × 10-4; 95% CI, 2.19 × 10-4 to 8.95 × 10-4) and use of antihypertensives (ß = 1.19 × 10-2; 95% CI, 6.02 × 10-3 to 1.77 × 10-2). Insular region ePVS volume was positively associated with age (ß = 1.18 × 10-3; 95% CI, 7.98 × 10-4 to 1.55 × 10-3). Brainstem ePVS volume was smaller in Black than in White participants (ß = -5.34 × 10-3; 95% CI, -8.26 × 10-3 to -2.41 × 10-3). Frontoparietal ePVS volume was positively associated with systolic blood pressure (ß = 1.14 × 10-4; 95% CI, 3.38 × 10-5 to 1.95 × 10-4) and negatively associated with age (ß = -3.38 × 10-4; 95% CI, -5.40 × 10-4 to -1.36 × 10-4). Temporal region ePVS volume was negatively associated with age (ß = -1.61 × 10-2; 95% CI, -2.14 × 10-2 to -1.09 × 10-2), as well as Chinese American (ß = -2.35 × 10-1; 95% CI, -3.83 × 10-1 to -8.74 × 10-2) and Hispanic ethnicities (ß = -1.73 × 10-1; 95% CI, -2.96 × 10-1 to -4.99 × 10-2). Conclusions and Relevance: In this cross-sectional study of ePVSs in the whole brain, increased ePVS burden in the basal ganglia and thalamus was a surrogate marker for underlying cSVD, highlighting the clinical importance of ePVSs in these locations.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doenças de Pequenos Vasos Cerebrais , Humanos , Feminino , Idoso , Masculino , Anti-Hipertensivos , Estudos Transversais , Relevância Clínica , Encéfalo/patologia , Fatores de Risco , Doenças de Pequenos Vasos Cerebrais/patologia
5.
JAMA Netw Open ; 6(3): e231055, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857053

RESUMO

Importance: Little is known about the associations of strict blood pressure (BP) control with microstructural changes in small vessel disease markers. Objective: To investigate the regional associations of intensive vs standard BP control with small vessel disease biomarkers, such as white matter lesions (WMLs), fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF). Design, Setting, and Participants: The Systolic Blood Pressure Intervention Trial (SPRINT) is a multicenter randomized clinical trial that compared intensive systolic BP (SBP) control (SBP target <120 mm Hg) vs standard control (SBP target <140 mm Hg) among participants aged 50 years or older with hypertension and without diabetes or a history of stroke. The study began randomization on November 8, 2010, and stopped July 1, 2016, with a follow-up duration of approximately 4 years. A total of 670 and 458 participants completed brain magnetic resonance imaging at baseline and follow-up, respectively, and comprise the cohort for this post hoc analysis. Statistical analyses for this post hoc analysis were performed between August 2020 and October 2022. Interventions: At baseline, 355 participants received intensive SBP treatment and 315 participants received standard SBP treatment. Main Outcomes and Measures: The main outcomes were regional changes in WMLs, FA, MD (in white matter regions of interest), and CBF (in gray matter regions of interest). Results: At baseline, 355 participants (mean [SD] age, 67.7 [8.0] years; 200 men [56.3%]) received intensive BP treatment and 315 participants (mean [SD] age, 67.0 [8.4] years; 199 men [63.2%]) received standard BP treatment. Intensive treatment was associated with smaller mean increases in WML volume compared with standard treatment (644.5 mm3 vs 1258.1 mm3). The smaller mean increases were observed specifically in the deep white matter regions of the left anterior corona radiata (intensive treatment, 30.3 mm3 [95% CI, 16.0-44.5 mm3]; standard treatment, 80.5 mm3 [95% CI, 53.8-107.2 mm3]), left tapetum (intensive treatment, 11.8 mm3 [95% CI, 4.4-19.2 mm3]; standard treatment, 27.2 mm3 [95% CI, 19.4-35.0 mm3]), left superior fronto-occipital fasciculus (intensive treatment, 3.2 mm3 [95% CI, 0.7-5.8 mm3]; standard treatment, 9.4 mm3 [95% CI, 5.5-13.4 mm3]), left posterior corona radiata (intensive treatment, 26.0 mm3 [95% CI, 12.9-39.1 mm3]; standard treatment, 52.3 mm3 [95% CI, 34.8-69.8 mm3]), left splenium of the corpus callosum (intensive treatment, 45.4 mm3 [95% CI, 25.1-65.7 mm3]; standard treatment, 83.0 mm3 [95% CI, 58.7-107.2 mm3]), left posterior thalamic radiation (intensive treatment, 53.0 mm3 [95% CI, 29.8-76.2 mm3]; standard treatment, 106.9 mm3 [95% CI, 73.4-140.3 mm3]), and right posterior thalamic radiation (intensive treatment, 49.5 mm3 [95% CI, 24.3-74.7 mm3]; standard treatment, 102.6 mm3 [95% CI, 71.0-134.2 mm3]). Conclusions and Relevance: This study suggests that intensive BP treatment, compared with standard treatment, was associated with a slower increase of WMLs, improved diffusion tensor imaging, and FA and CBF changes in several brain regions that represent vulnerable areas that may benefit from more strict BP control. Trial Registration: ClinicalTrials.gov Identifier: NCT01206062.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Masculino , Humanos , Idoso , Pressão Sanguínea , Imagem de Tensor de Difusão , Biomarcadores
6.
IEEE Trans Emerg Top Comput Intell ; 7(2): 308-318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36969108

RESUMO

Conventional clustering techniques for neuroimaging applications usually focus on capturing differences between given subjects, while neglecting arising differences between features and the potential bias caused by degraded data quality. In practice, collected neuroimaging data are often inevitably contaminated by noise, which may lead to errors in clustering and clinical interpretation. Additionally, most methods ignore the importance of feature grouping towards optimal clustering. In this paper, we exploit the underlying heterogeneous clusters of features to serve as weak supervision for improved clustering of subjects, which is achieved by simultaneously clustering subjects and features via nonnegative matrix tri-factorization. In order to suppress noise, we further introduce adaptive regularization based on coefficient distribution modeling. Particularly, unlike conventional sparsity regularization techniques that assume zero mean of the coefficients, we form the distributions using the data of interest so that they could better fit the non-negative coefficients. In this manner, the proposed approach is expected to be more effective and robust against noise. We compared the proposed method with standard techniques and recently published methods demonstrating superior clustering performance on synthetic data with known ground truth labels. Furthermore, when applying our proposed technique to magnetic resonance imaging (MRI) data from a cohort of patients with Parkinson's disease, we identified two stable and highly reproducible patient clusters characterized by frontal and posterior cortical/medial temporal atrophy patterns, respectively, which also showed corresponding differences in cognitive characteristics.

7.
PLoS One ; 17(11): e0276392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327215

RESUMO

BACKGROUND: Recently, tau PET tracers have shown strong associations with clinical outcomes in individuals with cognitive impairment and cognitively unremarkable elderly individuals. flortaucipir PET scans to measure tau deposition in multiple brain areas as the disease progresses. This information needs to be summarized to evaluate disease severity and predict disease progression. We, therefore, sought to develop a machine learning-derived index, SPARE-Tau, which successfully detects pathology in the earliest disease stages and accurately predicts progression compared to a priori-based region of interest approaches (ROI). METHODS: 587 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort had flortaucipir scans, structural MRI scans, and an Aß biomarker test (CSF or florbetapir PET) performed on the same visit. We derived the SPARE-Tau index in a subset of 367 participants. We evaluated associations with clinical measures for CSF p-tau, SPARE-MRI, and flortaucipir PET indices (SPARE-Tau, meta-temporal, and average Braak ROIs). Bootstrapped multivariate adaptive regression splines linear regression analyzed the association between the biomarkers and baseline ADAS-Cog13 scores. Bootstrapped multivariate linear regression models evaluated associations with clinical diagnosis. Cox-hazards and mixed-effects models investigated clinical progression and longitudinal ADAS-Cog13 changes. The Aß positive cognitively unremarkable participants, not included in the SPARE-Tau training, served as an independent validation group. RESULTS: Compared to CSF p-tau, meta-temporal, and averaged Braak tau PET ROIs, SPARE-Tau showed the strongest association with baseline ADAS-cog13 scores and diagnosis. SPARE-Tau also presented the strongest association with clinical progression in cognitively unremarkable participants and longitudinal ADAS-Cog13 changes. Results were confirmed in the Aß+ cognitively unremarkable hold-out sample participants. CSF p-tau showed the weakest cross-sectional associations and longitudinal prediction. DISCUSSION: Flortaucipir indices showed the strongest clinical association among the studied biomarkers (flortaucipir, florbetapir, structural MRI, and CSF p-tau) and were predictive in the preclinical disease stages. Among the flortaucipir indices, the machine-learning derived SPARE-Tau index was the most sensitive clinical progression biomarker. The combination of different biomarker modalities better predicted cognitive performance.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Proteínas tau , Estudos Transversais , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Aprendizado de Máquina , Peptídeos beta-Amiloides
8.
Alzheimers Dement (N Y) ; 8(1): e12305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619830

RESUMO

Introduction: Neuroimaging heterogeneity in dementia has been examined using single modalities. We evaluated the associations of magnetic resonance imaging (MRI) atrophy and flortaucipir positron emission tomography (PET) clusters across the Alzheimer's disease (AD) spectrum. Methods: We included 496 Alzheimer's Disease Neuroimaging Initiative participants with brain MRI, flortaucipir PET scan, and amyloid beta biomarker measures obtained. We applied a novel robust collaborative clustering (RCC) approach on the MRI and flortaucipir PET scans. We derived indices for AD-like (SPARE-AD index) and brain age (SPARE-BA) atrophy. Results: We identified four tau (I-IV) and three atrophy clusters. Tau clusters were associated with the apolipoprotein E genotype. Atrophy clusters were associated with white matter hyperintensity volumes. Only the hippocampal sparing atrophy cluster showed a specific association with brain aging imaging index. Tau clusters presented stronger clinical associations than atrophy clusters. Tau and atrophy clusters were partially associated. Conclusions: Each neuroimaging modality captured different aspects of brain aging, genetics, vascular changes, and neurodegeneration leading to individual multimodal phenotyping.

9.
Sci Rep ; 11(1): 14124, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238951

RESUMO

Lobar cerebral microbleeds (CMBs) and localized non-hemorrhage iron deposits in the basal ganglia have been associated with brain aging, vascular disease and neurodegenerative disorders. Particularly, CMBs are small lesions and require multiple neuroimaging modalities for accurate detection. Quantitative susceptibility mapping (QSM) derived from in vivo magnetic resonance imaging (MRI) is necessary to differentiate between iron content and mineralization. We set out to develop a deep learning-based segmentation method suitable for segmenting both CMBs and iron deposits. We included a convenience sample of 24 participants from the MESA cohort and used T2-weighted images, susceptibility weighted imaging (SWI), and QSM to segment the two types of lesions. We developed a protocol for simultaneous manual annotation of CMBs and non-hemorrhage iron deposits in the basal ganglia. This manual annotation was then used to train a deep convolution neural network (CNN). Specifically, we adapted the U-Net model with a higher number of resolution layers to be able to detect small lesions such as CMBs from standard resolution MRI. We tested different combinations of the three modalities to determine the most informative data sources for the detection tasks. In the detection of CMBs using single class and multiclass models, we achieved an average sensitivity and precision of between 0.84-0.88 and 0.40-0.59, respectively. The same framework detected non-hemorrhage iron deposits with an average sensitivity and precision of about 0.75-0.81 and 0.62-0.75, respectively. Our results showed that deep learning could automate the detection of small vessel disease lesions and including multimodal MR data (particularly QSM) can improve the detection of CMB and non-hemorrhage iron deposits with sensitivity and precision that is compatible with use in large-scale research studies.


Assuntos
Doença de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Ferro/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Redes Neurais de Computação , Neuroimagem/estatística & dados numéricos
10.
Oncol Res ; 29(2): 87-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37305397

RESUMO

The activation of some oncogenes promote cancer cell proliferation and growth, facilitate cancer progression and metastasis by induce DNA replication stress, even genome instability. Activation of the cyclic GMP-AMP synthase (cGAS) mediates classical DNA sensing, is involved in genome instability, and is linked to various tumor development or therapy. However, the function of cGAS in gastric cancer remains elusive. In this study, the TCGA database and retrospective immunohistochemical analyses revealed substantially high cGAS expression in gastric cancer tissues and cell lines. By employing cGAS high-expression gastric cancer cell lines, including AGS and MKN45, ectopic silencing of cGAS caused a significant reduction in the proliferation of the cells, tumor growth, and mass in xenograft mice. Mechanistically, database analysis predicted a possible involvement of cGAS in the DNA damage response (DDR), further data through cells revealed protein interactions of the cGAS and MRE11-RAD50-NBN (MRN) complex, which activated cell cycle checkpoints, even increased genome instability in gastric cancer cells, thereby contributing to gastric cancer progression and sensitivity to treatment with DNA damaging agents. Furthermore, the upregulation of cGAS significantly exacerbated the prognosis of gastric cancer patients while improving radiotherapeutic outcomes. Therefore, we concluded that cGAS is involved in gastric cancer progression by fueling genome instability, implying that intervening in the cGAS pathway could be a practicable therapeutic approach for gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Estudos Retrospectivos , Transdução de Sinais , Proliferação de Células/genética , Dano ao DNA
11.
IEEE Trans Biomed Eng ; 67(10): 2735-2744, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31995474

RESUMO

Feature dimensionality reduction plays an important role in radiomic studies with a large number of features. However, conventional radiomic approaches may suffer from noise, and feature dimensionality reduction techniques are not equipped to utilize latent supervision information of patient data under study, such as differences in patients, to learn discriminative low dimensional representations. To achieve robustness to noise and feature dimensionality reduction with improved discriminative power, we develop a robust collaborative clustering method to simultaneously cluster patients and radiomic features into distinct groups respectively under adaptive sparse regularization. Our method is built upon matrix tri-factorization enhanced by adaptive sparsity regularization for simultaneous feature dimensionality reduction and denoising. Particularly, latent grouping information of patients with distinct radiomic features is learned and utilized as supervision information to guide the feature dimensionality reduction, and noise in radiomic features is adaptively isolated in a Bayesian framework under a general assumption of Laplacian distributions of transform-domain coefficients. Experiments on synthetic data have demonstrated the effectiveness of the proposed approach in data clustering, and evaluation results on an FDG-PET/CT dataset of rectal cancer patients have demonstrated that the proposed method outperforms alternative methods in terms of both patient stratification and prediction of patient clinical outcomes.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Teorema de Bayes , Análise por Conglomerados , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias/diagnóstico por imagem , Prognóstico
12.
Proc IEEE Int Symp Biomed Imaging ; 2019: 1303-1306, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31803347

RESUMO

Most machine learning approaches in radiomics studies ignore the underlying difference of radiomic features computed from heterogeneous groups of patients, and intrinsic correlations of the features are not fully exploited yet. In order to better predict clinical outcomes of cancer patients, we adopt an unsupervised machine learning method to simultaneously stratify cancer patients into distinct risk groups based on their radiomic features and learn low-dimensional representations of the radiomic features for robust prediction of their clinical outcomes. Based on nonnegative matrix tri-factorization techniques, the proposed method applies collaborative clustering to radiomic features of cancer patients to obtain clusters of both the patients and their radiomic features so that patients with distinct imaging patterns are stratified into different risk groups and highly correlated radiomic features are grouped in the same radiomic feature clusters. Experiments on a FDG-PET/CT dataset of rectal cancer patients have demonstrated that the proposed method facilitates better stratification of patients with distinct survival patterns and learning of more effective low-dimensional feature representations that ultimately leads to accurate prediction of patient survival, outperforming conventional methods under comparison.

13.
Org Lett ; 21(17): 7084-7088, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31461298

RESUMO

We describe a Pd-catalyzed selective C-H arylation reaction of phenylacetaldehydes using l-valine as the transient directing group. This process showed a broad substrate scope and excellent selectivity in which a ligand-controlled functionalization of the unactivated ß-C(sp3)-H bond. In addition, enantioselective arylation of phenylacetaldehydes was preliminarily explored by utilizing a bulky chiral transient directing group.

14.
Cells ; 8(5)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121964

RESUMO

Angiogenesis is essential for the development, growth, and metastasis of solid tumors. Vaccination with viable human umbilical vein endothelial cells (HUVECs) has been used for antitumor angiogenesis. However, the limited immune response induced by HUVECs hinders their clinical application. In the present study, we found that HUVECs induced by a tumor microenvironment using the supernatant of murine CT26 colorectal cancer cells exerted a better antiangiogenic effect than HUVECs themselves. The inhibitory effect on tumor growth in the induced HUVEC group was significantly better than that of the HUVEC group, and the induced HUVEC group showed a strong inhibition in CD31-positive microvessel density in the tumor tissues. Moreover, the level of anti-induced HUVEC membrane protein antibody in mouse serum was profoundly higher in the induced HUVEC group than in the HUVEC group. Based on this, the antitumor effect of a vaccine with a combination of induced HUVECs and dendritic cell-loading CT26 antigen (DC-CT26) was evaluated. Notably, the microvessel density of tumor specimens was significantly lower in the combined vaccine group than in the control groups. Furthermore, the spleen index, the killing effect of cytotoxic T lymphocytes (CTLs), and the concentration of interferon-γ in the serum were enhanced in the combined vaccine group. Based on these results, the combined vaccine targeting both tumor angiogenesis and tumor cells may be an attractive and effective cancer immunotherapy strategy.


Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias Colorretais/terapia , Microambiente Tumoral/imunologia , Vacinas Combinadas/uso terapêutico , Animais , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C
15.
Med Image Comput Comput Assist Interv ; 11767: 583-592, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32095790

RESUMO

Radiomic approaches have achieved promising performance in prediction of clinical outcomes of cancer patients. Particularly, feature dimensionality reduction plays an important role in radiomic studies. However, conventional feature dimensionality reduction techniques are not equipped to suppress data noise or utilize latent supervision information of patient data under study (e.g. difference in patients) for learning discriminative low dimensional representations. To achieve feature dimensionality reduction with improved discriminative power and robustness to noisy radiomic features, we develop an adaptive sparsity regularization based collaborative clustering method to simultaneously cluster patients and radiomic features into distinct groups respectively. Our method is built on adaptive sparsity regularized matrix tri-factorization for simultaneous feature denoising and dimension reduction so that the noise is adaptively isolated from the features, and grouping information of patients with distinctive features provides latent supervision information to guide feature dimension reduction. The sparsity regularization is grounded on distribution modeling of transform-domain coefficients in a Bayesian framework. Experiments on synthetic data have demonstrated the effectiveness of the proposed approach in data clustering, and empirical results on an FDG-PET/CT dataset of rectal cancer patients have demonstrated that the proposed method outperforms alternative methods in terms of both patient stratification and prediction of patient clinical outcomes.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31893285

RESUMO

Ultrasound imaging (US) is commonly used in nephrology for diagnostic studies of the kidneys and lower urinary tract. However, it remains challenging to automate the disease diagnosis based on clinical 2D US images since they provide partial anatomic information of the kidney and the 2D images of the same kidney may have heterogeneous appearance. To overcome this challenge, we develop a novel multi-instance deep learning method to build a robust classifier by treating multiple 2D US images of each individual subject as multiple instances of one bag. Particularly, we adopt convolutional neural networks (CNNs) to learn instance-level features from 2D US kidney images and graph convolutional networks (GCNs) to further optimize the instance-level features by exploring potential correlation among instances of the same bag. We also adopt a gated attention-based MIL pooling to learn bag-level features using full-connected neural networks (FCNs). Finally, we integrate both instance-level and bag-level supervision to further improve the bag-level classification accuracy. Ablation studies and comparison results have demonstrated that our method could accurately diagnose kidney diseases using ultrasound imaging, with better performance than alternative state-of-the-art multi-instance deep learning methods.

17.
Oncol Rep ; 40(5): 3006-3014, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30132560

RESUMO

The antitumor effect of the human umbilical vein endothelial cell (HUVEC) vaccine has been well documented; however, its anti­angiogenic effects on human esophageal squamous cell carcinoma (ESCC) have yet to be studied. In the present study, a 'humanized' mouse model was established by transplanting NOD/SCID mice with human peripheral blood mononuclear cells (PBMC). After 4 weeks, the level of cluster of differentiation (CD)­45+ human T­lymphocytes in mouse peripheral blood was >0.1%, which indicated that mouse reconstruction and the human immune system transformation had been successful. The humanized mice were used to evaluate the anti­angiogenic effect of the HUVEC vaccine on human ESCC. After immunization with the HUVEC vaccine for 5 consecutive weeks, the humanized mice were subcutaneously transplanted with EC9706 cells. The results indicated that the HUVEC vaccine reduced the size of human esophageal carcinoma xenografts by suppressing angiogenesis. In addition, the HUVEC­immunized mice exhibited reduced expression of angiogenesis­associated antigens (vascular endothelial growth factor receptor 2 and VE­Cadherin) in the tumor specimens, and increased levels of angiogenesis­associated antibodies in the serum. Notably, the HUVEC vaccine also increased the infiltration of human T­lymphocytes into the spleen of humanized mice. In conclusion, the present study demonstrated the anti­angiogenic effect of the HUVEC vaccine on ESCC in a humanized mouse model, and set an experimental foundation for the application of the HUVEC vaccine in ESCC patients.


Assuntos
Vacinas Anticâncer/farmacologia , Carcinoma de Células Escamosas/terapia , Neoplasias Esofágicas/terapia , Células Endoteliais da Veia Umbilical Humana/imunologia , Leucócitos Mononucleares/transplante , Neovascularização Patológica/terapia , Animais , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Carcinoma de Células Escamosas/imunologia , Linhagem Celular Tumoral , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Patológica/imunologia , Quimeras de Transplante/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Org Lett ; 20(9): 2676-2679, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29672064

RESUMO

An efficient synthesis of bisbenzopyrones by a N-heterocyclic carbene (NHC)-catalyzed intramolecular hydroacylation-Stetter reaction cascade has been developed. A series of symmetrical and unsymmetrical bisbenzopyrones were obtained with good to excellent yields. Bisbenzopyran-4-ol was synthesized efficiently.

19.
Oncotarget ; 8(43): 74673-74687, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088816

RESUMO

Although it has been known that the tumor microenvironment affects angiogenesis, the precise mechanism remains unclear. In this study, we simulated the microenvironment of human esophageal squamous cell carcinoma (ESCC) by tumor conditioned medium (TCM) to assess the influence on normal endothelial cells (NECs). We found that the TCM-induced NECs showed enhanced angiogenic properties, such as migration, invasion and tube formation. Moreover, the TCM-induced NECs expressed tumor endothelial cells (TECs) markers at higher levels, which indicated that TCM probably promoted tumor angiogenesis by coercing NECs to change toward TECs. The microarray gene expression analysis indicated that TCM induced great changes in the genome of NECs and altered many regulatory networks, especially c-MYC and JAK/STAT3 signaling pathway. More importantly, we investigated the anti-angiogenic effect of metformin, and found that metformin abrogated the ESCC microenvironment-induced transition of NECs toward TECs by inhibiting JAK/STAT3/c-MYC signaling pathway. Furthermore, we verified the anti-angiogenic activity of metformin in vivo by a human ESCC patient-derived xenograft (PDX) mouse model for the first time. Taken together, our research provides a novel mechanism for the anti-angiogenic effect of metformin, and sets an experimental basis for the development of new anti-angiogenic drugs by blocking the transition of NECs toward TECs, which possibly open new avenues for targeted treatment of cancer.

20.
Org Lett ; 19(19): 5272-5275, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28906121

RESUMO

An efficient N-heterocyclic carbene catalyzed glycosylation of 2-nitrogalactals with alcohols and phenol has been developed for the first time. A wide variety of 1,2-cis-2-nitroglycosides can be obtained with good to excellent yields and high to excellent α-selectivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA