Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 244: 120402, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572460

RESUMO

Chemical speciation of mercury (Hg) in clouds largely determines the photochemistry of Hg in the atmosphere and consequently influences Hg deposition on the surface through precipitation. Cloud water chemistry has notably changed over the last decade in response to global changes, however, the effects on Hg speciation remain poorly understood. During summer 2021, we collected sixty cloud water samples at Mt. Tai in eastern China and compared the cloud chemistry and Hg speciation with our previous findings during summer 2015. The results showed that although there were no statistically significant differences in the concentrations of total Hg (THg), dissolved Hg (DHg), and particulate Hg (PHg), there was a distinct shift in DHg species from the predominated Hg-DOM (78.6% in 2015 campaign) to the more homogeneously distributed Hg(OH)2 (28.4% in 2021 campaign), HgBr2 (26.5%), Hg-DOM (17.3%) and HgBrOH (17.0%). Changes in cloud water chemistry, particularly the significant increase in pH values to 6.49 ± 0.27 and unexpectedly high levels of bromide ions (Br-, 0.19 ± 0.22 mg L-1), were found to drive the changing of Hg speciation by enhancing Hg(II) hydrolysis and binding by Br-. Elevated Br- originating primarily from the continent likely caused noticeable differences in the dominating DHg species between cloud water sourced from marine and continental regions. The changes in chemical speciation of DHg were estimated to result in a 2.6-fold decrease in Hg(II) photoreduction rate between 2015 and 2021 campaigns (0.178 ± 0.054 h-1 vs. 0.067 ± 0.027 h-1), implying a shortened lifetime of atmospheric Hg and increased ecological risks associated with Hg wet deposition.


Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Água , Monitoramento Ambiental/métodos , China , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 898: 165303, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419351

RESUMO

Nitrate (NO3-) is a major component of atmospheric fine particles. Recent studies in eastern China have shown the increasing trend of NO3- in contrast to the ongoing control of nitrogen oxide (NOx). Here, we elucidate the effects of reduced sulfur dioxide (SO2) on the enhancement of NO3- formation based on field measurements at the summit of Mt. Tai (1534 m a.s.l.) and present detailed modelling analyses. From 2007 to 2018, the measured springtime concentrations of various primary pollutants and fine sulfate (SO42-) decreased sharply (-16.4 % to -89.7 %), whereas fine NO3- concentration increased by 22.8 %. The elevated NO3- levels cannot be explained by the changes in meteorological conditions or other related parameters but were primarily attributed to the considerable reduction in SO42- concentrations (-73.4 %). Results from a multi-phase chemical box model indicated that the reduced SO42- levels decreased the aerosol acidity and prompted the partitioning of HNO3 into the aerosol phase. WRF-Chem model analyses suggest that such a negative effect is a regional phenomenon throughout the planetary boundary layer over eastern China in spring. This study provides new insights into the worsening situation of NO3- aerosol pollution and has important implications for controlling haze pollution in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA