Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Ther ; 32(5): 1461-1478, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414246

RESUMO

Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.


Assuntos
Cartilagem Articular , Condrócitos , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Via de Sinalização Hippo , Osteoartrite , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/terapia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
J Clin Nurs ; 33(3): 1048-1061, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37828751

RESUMO

AIMS: To establish a cognitive appraisal path model that examines the impact of stroke knowledge on stigma with the parallel mediating effects of negative and positive coping traits, as well as the moderating effects of family functioning. BACKGROUND: Stroke-related stigma, a 'mixture' of negative emotions involving internal criticism and external judgement, has been shown to impair patients' health outcomes. However, the specific factors underlying cognitive appraisals and their pathways remain unknown. DESIGN: A cross-sectional design. METHODS: The cross-sectional sample was from two stroke centres in China. Questionnaires were administered to collect sociodemographic data, stroke knowledge, coping traits, family functioning and stigma. Hierarchical regression models and the moderated parallel mediation model were constructed to analyse influencing pathways. The study adhered to the strengthening the reporting of observational studies in epidemiology guideline. RESULTS: All 144 samples reported stigma symptoms with a moderate-to-high standardising score. The best hierarchical regression model explains 55.5% of the variance in stigma. The parallel mediation model indicated that negative and positive coping traits co-mediating the association of stroke knowledge and stigma. After adding the family functioning as a moderator, the moderated parallel mediation model was confirmed with adequate fit indices. CONCLUSION: Among the cognitive appraisal factors affecting stroke-related stigma, stroke knowledge reduces stigma by modifying coping traits, while poor family functioning may serve as an opposing moderator. Notably, when family support is insufficient, enhanced stroke knowledge might paradoxically exacerbate the stigma. RELEVANCE TO CLINICAL PRACTICE: This study contributes knowledge on transforming health education and emphasises the pivotal roles of clinical nursing practitioners. In similar global contexts, the study highlights integrating health education, psychological counselling and family support to advance systematic nursing practices. PATIENT OR PUBLIC CONTRIBUTION: None.


Assuntos
Adaptação Psicológica , Capacidades de Enfrentamento , Humanos , Estudos Transversais , Pacientes , Cognição , Estigma Social
3.
Cell Death Differ ; 30(10): 2293-2308, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608075

RESUMO

Proper development of the limb bud relies on the concordance of various signals, but its molecular mechanisms have not yet been fully illustrated. Here we report that heterogeneous nuclear ribonucleoprotein K (hnRNPK) is essential for limb bud development. Its ablation in the limb bud results in limbless forelimbs and severe deformities of the hindlimbs. In terms of mechanism, hnRNPK functions as a transcription activator for the vital genes involved in the three regulatory axes of limb bud development. Simultaneously, for the first time we elucidate that hnRNPK binds to and coordinates with the insulator protein CCCTC binding factor (CTCF) to maintain a three-dimensional chromatin architecture. Ablation of hnRNPK weakens the binding strength of CTCF to topologically associating domain (TAD) boundaries, then leading to the loose TADs, and decreased interactions between promoters and enhancers, and further decreased transcription of developmental genes. Our study establishes a fundamental and novel role of hnRNPK in regulating limb bud development.

4.
J Control Release ; 359: 132-146, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269965

RESUMO

Primary central nervous system lymphoma (PCNSL) is an extremely malignant CNS tumor with high incidence and mortality rates. Its chemotherapy in the clinic has been restricted owing to unsatisfactory drug distribution in the cerebral tissues. In this study, a redox-responsive prodrug of disulfide-lenalidomide-methoxy polyethylene glycol (LND-DSDA-mPEG) was successfully developed for the cerebral delivery of lenalidomide (LND), and methotrexate (MTX) via subcutaneous (s.c.) administration at the neck for combined anti-angiogenesis and chemotherapy on PCNSL. Both the subcutaneous xenograft tumor model and orthotopic intracranial tumor model demonstrated that the co-delivery of LND and MTX nanoparticles (MTX@LND NPs) may significantly inhibit the growth of lymphoma and effectively prevent liver metastasis by downregulating CD31 and VEGF expression. Moreover, an orthotopic intracranial tumor model further verified that through s.c. administration at the neck, redox-responsive MTX@LND NPs could bypass the blood-brain barrier (BBB), efficiently distribute into brain tissues, and effectively inhibit lymphoma growth in the brain, as detected by magnetic resonance imaging (MRI). Taken together, this biodegradable, biocompatible, and redox-responsive nano-prodrug with highly effective targeted delivery of LND and MTX in the brain through the lymphatic vasculature may provide a facile and feasible treatment strategy for PCNSL in the clinic.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Linfoma , Pró-Fármacos , Humanos , Metotrexato , Pró-Fármacos/uso terapêutico , Lenalidomida/uso terapêutico , Linfoma/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Oxirredução
5.
ACS Appl Mater Interfaces ; 15(27): 32732-32743, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365929

RESUMO

Focused ultrasound, as a protocol of cancer therapy, might induce extracellular adenosine triphosphate (ATP) release, which could enhance cancer immunotherapy and be monitored as a therapeutic marker. To achieve an ATP-detecting probe resistant to ultrasound irradiation, we constructed a Cu/N-doped carbon nanosphere (CNS), which has two fluorescence (FL) emissions at 438 and 578 nm to detect ultrasound-regulated ATP release. The addition of ATP to Cu/N-doped CNS was conducted to recover the FL intensity at 438 nm, where ATP enhanced the FL intensity probably via intramolecular charge transfer (ICT) primarily and hydrogen-bond-induced emission (HBIE) secondarily. The ratiometric probe was sensitive to detect micro ATP (0.2-0.6 µM) with the limit of detection (LOD) of 0.068 µM. The detection of ultrasound-regulated ATP release by Cu,N-CNS/RhB showed that ATP release was enhanced by the long-pulsed ultrasound irradiation at 1.1 MHz (+37%, p < 0.01) and reduced by the short-pulsed ultrasound irradiation at 5 MHz (-78%, p < 0.001). Moreover, no significant difference in ATP release was detected between the control group and the dual-frequency ultrasound irradiation group (+4%). It is consistent with the results of ATP detection by the ATP-kit. Besides, all-ATP detection was developed to prove that the CNS had ultrasound-resistant properties, which means it could bear the irradiation of focused ultrasound in different patterns and detect all-ATP in real time. In the study, the ultrasound-resistant probe has the advantages of simple preparation, high specificity, low limit of detection, good biocompatibility, and cell imaging ability. It has great potential to act as a multifunctional ultrasound theranostic agent for simultaneous ultrasound therapy, ATP detection, and monitoring.


Assuntos
Nanosferas , Neoplasias , Pontos Quânticos , Humanos , Trifosfato de Adenosina , Corantes Fluorescentes , Carbono
6.
ACS Nano ; 17(11): 10925-10937, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219600

RESUMO

Immunotherapy as an alternative treatment strategy for B-cell lymphoma is undesirable because of tumor heterogeneity and immune surveillance. Spermidine (SPM), as a regulator of the tumor microenvironment (TME), can facilitate the release of damage-associated molecular patterns (DAMPs) from cancer cells, promote immune recognition, and thus alleviate immune surveillance in the TME. Hence, in this work, self-assembled spermidine-based metal-immunopeptide nanocomplexes (APP-Fe NCs; APP is anti-programmed death ligand-1 peptide) with pH-responsive release kinetics were prepared via the flash nanocomplexation (FNC) technique based on the noncovalent interaction between APP-SPM-dextran (DEX) and sodium tripolyphosphate (TPP) and coordination between Fe3+ and TPP. An in vitro study suggested that APP-Fe NCs effectively induce strong oxidative stress and mitochondrial dysfunction and subsequently lead to ferroptosis in cells by interfering with homeostasis in lymphoma cells. Further investigation on lymphoma mice models demonstrated that APP-Fe NCs effectively inhibited the growth and liver metastasis of lymphomas. Mechanistically, by triggering ferroptosis in tumor tissues, these spermidine-containing APP-Fe NCs efficiently facilitated the release of DAMPs and ultimately reshaped TME to enhance immunotherapy efficacy in lymphoma. Combined with its good histocompatibility and facile preparation technique, this pH-responsive APP-Fe NCs with regulation on TME may hold potential for cascade amplification on the combinative immunotherapy of lymphoma in the clinic.


Assuntos
Linfoma , Neoplasias , Animais , Camundongos , Espermidina/farmacologia , Microambiente Tumoral , Linfoma/tratamento farmacológico , Imunoterapia , Alarminas , Linhagem Celular Tumoral
7.
Adv Sci (Weinh) ; 10(14): e2206296, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965031

RESUMO

The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , Diferenciação Celular , Fatores de Transcrição
8.
J Int Med Res ; 51(2): 3000605231153587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36756846

RESUMO

OBJECTIVE: DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia-reperfusion injury (LIRI). METHODS: We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. RESULTS: Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. CONCLUSIONS: Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.


Assuntos
Transplante de Pulmão , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Metilação de DNA , Pulmão/patologia , Transplante de Pulmão/efeitos adversos , Inflamação/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Oxigênio/metabolismo
9.
Cancer Biother Radiopharm ; 38(5): 313-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33332223

RESUMO

Background: This study evaluated the efficacy and safety between 8 spheres plus bronchial arterial infusion (BAI) cisplatin and intravenous vinorelbine plus cisplatin as third-line treatments in locally advanced non-small cell lung cancer (NSCLC) patients. Materials and Methods: Totally, 56 locally advanced NSCLC patients with second-line chemotherapy failure were recruited. Then, 28 patients received 8 spheres plus BAI cisplatin treatment, and another 28 patients received intravenous vinorelbine plus cisplatin treatment. Results: In general, 8 spheres plus BAI cisplatin increased objective response rate (57.2% vs. 17.8%, p = 0.002) and disease control rate (78.6% vs. 42.8%, p = 0.003) compared with intravenous vinorelbine plus cisplatin; meanwhile, it also elevated quality of life (QOL) score (46.7 ± 7.1 vs. 41.5 ± 5.2, p = 0.003) compared with intravenous vinorelbine plus cisplatin. Furthermore, 8 spheres plus BAI cisplatin prolonged progression-free survival (PFS) (median [95% confidence interval, CI]: 7.9 [6.3-9.5] months vs. 4.3 [3.5-5.1] months, p < 0.001) and overall survival (OS) (median [95% CI]: 14.6 [11.0-18.2] months vs. 10.5 [10.2-10.8] months, p = 0.029) compared with intravenous vinorelbine plus cisplatin, which was further supported by multivariate Cox's regression analysis (PFS: p < 0.001; OS: p = 0.007). In addition, subgroup analyses revealed that 8 spheres plus BAI cisplatin markedly elevated treatment response, QOL, and survival compared with intravenous vinorelbine plus cisplatin in squamous cell carcinoma patients, but not in adenomatous carcinoma and adenosquamous carcinoma patients. Regarding safety, 8 spheres plus BAI cisplatin exhibited lower rates of gastrointestinal tract complication (p < 0.001) and myelosuppression (p < 0.001) than intravenous vinorelbine plus cisplatin. Conclusions: 8 spheres plus BAI cisplatin displays good efficacy and well-tolerated safety profiles in locally advanced NSCLC patients with second-line chemotherapy failure.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Vinorelbina/efeitos adversos , Cisplatino/uso terapêutico , Qualidade de Vida , Neoplasias Pulmonares/patologia , Vimblastina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
10.
Mikrochim Acta ; 190(1): 14, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477862

RESUMO

Quantitative detection of different types of reactive oxygen species (ROS) is vital for understanding the crucial roles of them in biological processes. However, few researches achieved the detection of multiple types of ROS with one probe until now. Given this, we designed and prepared fluorescent gold nanoclusters capped by dual ligand bovine serum albumin and lysozyme (BSA-LYS-AuNCs), which could detect 3 specific types of ROS based on its different fluorescent responses to H2O2, •OH and ClO-, respectively. The limit of detection (LOD) of H2O2, •OH, and ClO- was as low as 0.82 µM, 0.45 µM, and 0.62 µM. Moreover, as an important ROS type, ClO- was detected with high sensitivity and low LOD by BSA-LYS-AuNCs. It was also proved that the crosslinking of protein mainly contributed to the unique fluorescent characteristics of the probe exposing to ClO-. Furthermore, the fluorescent probe achieved the smart detection of hROS (including •OH and ClO-) and wROS (the form of H2O2) in the real sample, which could also been applied specifically to the detection of antioxidants, e.g. ascorbic acid. The gold nanoclusters developed have high potential for the smart detection of multiple ROS in the body fluid of organisms.


Assuntos
Ouro , Peróxido de Hidrogênio , Ligantes , Espécies Reativas de Oxigênio
11.
Oxid Med Cell Longev ; 2022: 8672969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120596

RESUMO

Intervertebral disc degeneration (IDD) is the leading cause of low back pain (LBP). However, effective therapeutic drugs for IDD remain to be further explored. Inflammatory cytokines play a pivotal role in the onset and progression of IDD. Dihydroartemisinin (DHA) has been well reported to have powerful anti-inflammatory effects, but whether DHA could ameliorate the development of IDD remained unclear. In this study, the effects of DHA on extracellular matrix (ECM) metabolism and cellular senescence were firstly investigated in nucleus pulposus cells (NPCs) under tumor necrosis factor alpha (TNFα)-induced inflammation. Meanwhile, AKT agonist sc-79 was used to determine whether DHA exerted its actions through regulating PI3K/AKT and NF-κB signaling pathways. Next, the therapeutic effects of DHA were tested in a puncture-induced rat IDD model. Finally, we detected the activation of PI3K/AKT and NF-κB signaling pathways in clinical degenerative nucleus pulposus specimens. We demonstrated that DHA ameliorated the imbalance between anabolism and catabolism of extracellular matrix and alleviated NPCs senescence induced by TNFα in vitro. Further, we illustrated that DHA mitigated the IDD progression in a puncture-induced rat model. Mechanistically, DHA inhibited the activation of PI3K/AKT and NF-κB signaling pathways induced by TNFα, which was undermined by AKT agonist sc-79. Molecular docking predicted that DHA bound to the PI3K directly. Intriguingly, we also verified the activation of PI3K/AKT and NF-κB signaling pathways in clinical degenerative nucleus pulposus specimens, suggesting that DHA may qualify itself as a promising drug for mitigating IDD.


Assuntos
Artemisininas , Degeneração do Disco Intervertebral , Animais , Anti-Inflamatórios/farmacologia , Artemisininas/farmacologia , Citocinas/metabolismo , Degeneração do Disco Intervertebral/patologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
12.
Cell Death Dis ; 13(9): 803, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127325

RESUMO

The harmonious functioning of growth plate chondrocytes is crucial for skeletogenesis. These cells rely on an appropriate intensity of glycolysis to maintain survival and function in an avascular environment, but the underlying mechanism is poorly understood. Here we show that Hnrnpk orchestrates growth plate development by maintaining the appropriate intensity of glycolysis in chondrocytes. Ablating Hnrnpk causes the occurrence of dwarfism, exhibiting damaged survival and premature differentiation of growth plate chondrocytes. Furthermore, Hnrnpk deficiency results in enhanced transdifferentiation of hypertrophic chondrocytes and increased bone mass. In terms of mechanism, Hnrnpk binds to Hif1a mRNA and promotes its degradation. Deleting Hnrnpk upregulates the expression of Hif1α, leading to the increased expression of downstream glycolytic enzymes and then exorbitant glycolysis. Our study establishes an essential role of Hnrnpk in orchestrating the survival and differentiation of chondrocytes, regulating the Hif1α-glycolysis axis through a post-transcriptional mechanism during growth plate development.


Assuntos
Condrócitos , Lâmina de Crescimento , Diferenciação Celular/genética , Condrócitos/metabolismo , Glicólise/genética , Lâmina de Crescimento/metabolismo , RNA Mensageiro/metabolismo
13.
Mol Ther ; 30(10): 3241-3256, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35619555

RESUMO

Abnormal mechanical load is a main risk factor of intervertebral disc degeneration (IDD), and cellular senescence is a pathological change in IDD. In addition, extracellular matrix (ECM) stiffness promotes human nucleus pulposus cells (hNPCs) senescence. However, the molecular mechanism underlying mechano-induced cellular senescence and IDD progression is not yet fully elucidated. First, we demonstrated that mechano-stress promoted hNPCs senescence via NF-κB signaling. Subsequently, we identified periostin as the main mechano-responsive molecule in hNPCs through unbiased sequencing, which was transcriptionally upregulated by NF-κB p65; moreover, secreted periostin by senescent hNPCs further promoted senescence and upregulated the catabolic process in hNPCs through activating NF-κB, forming a positive loop. Both Postn (encoding periostin) knockdown via siRNA and periostin inactivation via neutralizing antibodies alleviated IDD and NPCs senescence. Furthermore, we found that mechano-stress initiated the positive feedback of NF-κB and periostin via PIEZO1. PIEZO1 activation by Yoda1 induced severe IDD in rat tails without compression, and Postn knockdown alleviated the Yoda1-induced IDD in vivo. Here, we reported for the first time that self-amplifying loop of NF-κB and periostin initiated via PIEZO1 under mechano-stress accelerated NPCs senescence, leading to IDD. Furthermore, periostin neutralizing antibodies, which may serve as potential therapeutic agents for IDD, interrupted this loop.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Anticorpos Neutralizantes/metabolismo , Moléculas de Adesão Celular , Senescência Celular/genética , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Canais Iônicos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , RNA Interferente Pequeno/metabolismo , Ratos
14.
J Med Internet Res ; 24(3): e28978, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323120

RESUMO

BACKGROUND: Telemedicine plays an important role in the management of inflammatory bowel disease (IBD), particularly during a pandemic such as COVID-19. However, the effectiveness and efficiency of telemedicine in managing IBD are unclear. OBJECTIVE: This systematic review and meta-analysis aimed to compare the impact of telemedicine with that of standard care on the management of IBD. METHODS: We systematically searched the PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus databases on April 22, 2020. Randomized controlled trials comparing telemedicine with standard care in patients with IBD were included, while conference abstracts, letters, reviews, laboratory studies, and case reports were excluded. The IBD-specific quality of life (QoL), disease activity, and remission rate in patients with IBD were assessed as primary outcomes, and the number of in-person clinic visits per patient, patient satisfaction, psychological outcome, and medication adherence were assessed as secondary outcomes. Review Manage 5.3 and Stata 15.1 were used for data analysis. RESULTS: A total of 17 randomized controlled trials (2571 participants) were included in this meta-analysis. The telemedicine group had higher IBD-specific QoL than the standard care group (standard mean difference 0.18, 95% CI 0.01 to 0.34; P.03). The number of clinic visits per patient in the telemedicine group was significantly lower than that in the standard care group (standard mean difference -0.71, 95% CI -1.07 to -0.36; P<.001). Subgroup analysis showed that adolescents in the telemedicine group had significantly higher IBD-specific QoL than those in the standard care group (standard mean difference 0.42, 95% CI 0.15 to 0.69; I2=0; P.002), but there was no significant difference between adults in the 2 groups. There were no significant differences in disease activity, remission rate, patient satisfaction, depression, self-efficacy, generic QoL, and medication adherence outcomes between the telemedicine and standard care groups. CONCLUSIONS: Telemedicine intervention showed a promising role in improving IBD-specific QoL among adolescents and decreased the number of clinic visits among patients with IBD. Further research is warranted to identify the group of patients with IBD who would most benefit from telemedicine.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Telemedicina , Adolescente , Adulto , Humanos , Doenças Inflamatórias Intestinais/terapia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Acta Biomater ; 144: 67-80, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331940

RESUMO

Gemcitabine, as a standard and classic strategy for B-cell lymphoma in the clinic, is limited by its poor pharmacodynamics. Although stimuli-responsive polymeric nanodelivery systems have been widely investigated in the past decade, issues such as complicated procedures, low loading capacity, and uncontrollable release kinetics still hinder their clinical translation. In view of the above considerations, we attempt to construct hyperbranched polyprodrug micelles with considerable drug loading via simple procedures and make use of the particularity of the tumor microenvironment to ensure that the micelles are "inactivated" in normal tissues and "activated" in the tumor microenvironment. Hence, in this work, a redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) with considerable loading capacity (≈ 24.6%) exhibited on-demand and accurate control of gemcitabine release under a simulated tumor microenvironment and thus significantly induced the apoptosis of B-cell lymphoma in vitro. Moreover, in the A20 tumor xenograft murine model, GSP NPs efficiently decreased the expansion of tumor tissues with minimal systemic toxicity. In summary, these redox-responsive and self-assembling GSP NPs with a facile one-pot synthesis procedure may hold great potency in clinical translation for enhanced chemotherapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: A redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) exhibited significant tumor therapeutic effects in vitro and in vivo. The polyprodrug GEM-S-S-PEG prepared in this study shows the great potential of redox-responsive nanodrugs for antitumor activity, which provides a reference value for the optimization of the design of functional polyprodrugs.


Assuntos
Linfoma de Células B , Linfoma , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos , Humanos , Linfoma/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Camundongos , Micelas , Neoplasias/tratamento farmacológico , Oxirredução , Polímeros/uso terapêutico , Pró-Fármacos/farmacologia , Microambiente Tumoral , Gencitabina
16.
J Colloid Interface Sci ; 615: 663-673, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35158197

RESUMO

In this work, a novel plasmonic ternary Bi/Bismuth oxycarbonate/Zinc bismuth oxide (Bi-Bi2O2CO3-ZnBi2O4) is synthesized synergistically by a one-step hydrothermal method. The results show that the metallic Bi spheres and ZnBi2O4 nanoparticles are uniformly distributed on the surface of flower-like Bi2O2CO3 layer. Compared with the bare ZnBi2O4 and Bi-Bi2O2CO3, the ternary Bi-Bi2O2CO3-ZnBi2O4 heterojunction displays a significantly improved solar energy harvesting efficiency and enhanced photocatalytic degradation activity for environmental organic pollutants. The degradation efficiency of organics reaches to 98.4% under simulated solar light illumination. The degradation kinetics indicates that the photocatalytic reaction rate constant of ternary system is about 4.4 and 29.5 times higher than that of pure ZnBi2O4 and Bi-Bi2O2CO3, respectively. Moreover, O2- and h+ are the main active species in the photodegradation reaction. The improvement of the photocatalytic activity of the composites is attributed to the synergistic effect of ternary heterostructure and surface plasmon resonance (SPR), which promotes charge transfer and effectively inhibits the recombination of photogenerated carriers.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120207, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34419829

RESUMO

Lysozyme (Lyz) is an important antibacterial protein that exists widely in nature. In recent years, the application of graphene oxide (GO) in the field of biotechnology electronics, optics, chemistry and energy storage has been extensively studied. However, due to the unique properties of GO, the mechanism of its interaction with biomacromolecule proteins is very complex. To further explore the interaction between GO and proteins we explore the influence of different pH and heat treatment conditions on the interaction between GO and Lyz, the GO (0-20 µg/mL) was added at a fixed Lyz concentration (0.143 mg/mL) under different pHs. The structure and surface charge changes of Lyz were measured by spectroscopic analysis and zeta potential. The results showed that the interaction between GO and Lyz depends on temperature and pH, significant changes have taken place in its tertiary and secondary structures. By analyzing the UV absorption spectrum, it was found that lysozyme and GO formed a stable complex, and the conformation of the enzyme was changed. In acidic pH conditions (i.e., pH < pI), a high density of Lyz were found to adsorb on the GO surface, whereas an increase in pH resulted in a progressive decrease in the density of the adsorbed Lyz. This pH-dependent adsorption is ascribed to the electrostatic interactions between the negatively charged GO surface and the tunable ionization of the Lyz molecules. The secondary structure of Lyz adsorbed on GO was also found to be highly dependent on the pH. In this paper, we investigated the exact mechanism of pH-influenced GO binding to lysozyme, which has important guidance significance for the potential toxicity of GO biology and its applications in biomedical fields such as structure-based drug design.


Assuntos
Grafite , Muramidase , Adsorção , Muramidase/metabolismo , Estrutura Secundária de Proteína
18.
J Mater Chem B ; 9(38): 7878-7908, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34611689

RESUMO

Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.


Assuntos
Anti-Infecciosos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Nanomedicina , Anti-Infecciosos/química , COVID-19/diagnóstico , COVID-19/virologia , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
19.
Artigo em Inglês | MEDLINE | ID: mdl-34072902

RESUMO

Due to the wishes of the elderly and the traditional family culture in China, family care is the main way of providing for the aged, and women's care is the main way. This is not conducive to the protection of women's employment rights and the realization of self-worth under the background of increasing women's autonomy. Based on the latest data of the China Health and Nutrition Survey Database (CHNS), this paper uses ordinary least squares (OLS) and the instrumental variable method of control endogeneity to analyze the influence of family care activities on the labor participation rate of married women. The innovation of this paper is to introduce family bargaining power into this kind of model for the first time, and further analyze the heterogeneity from the perspective of bargaining power differences. The empirical results show that the family elderly care activities have an obstacle effect on married women's participation in employment, and the family members with strong bargaining power will significantly hinder employment, so this paper puts forward policy recommendations in line with the actual situation, hoping to provide theoretical support for the improvement of the social security system for the elderly.


Assuntos
Características da Família , Classe Social , Idoso , China , Países em Desenvolvimento , Economia , Emprego , Feminino , Humanos , Fatores Socioeconômicos , Direitos da Mulher
20.
Exp Ther Med ; 22(1): 754, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34035851

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common renal cell carcinoma with a high mortality rate. Lung cancer-associated transcript 1 (LUCAT1) has been reported to be a potential biomarker of prognosis in human ccRCC. However, the underlying mechanism of the function of LUCAT1 in ccRCC remains poorly understood. The present study aimed to investigate the role and underlying mechanism of LUCAT1 in ccRCC. The expression level of LUCAT1, microRNA-375 (miR-375) and yes-associated protein 1 (YAP1) in ccRCC tissues and cells was detected by reverse transcription-quantitative PCR, and the protein level of YAP1 was detected by western blotting. The effects of LUCAT1 on cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8 and Transwell assays. The association between miR-375 and LUCAT1 or miR-375 and YAP1 was predicted by lncBase Predicted v.2 or TargetScan and verified using dual-luciferase reporter assay. The effect of LUCAT1 on ccRCC progression in vivo was evaluated using a xenograft tumor model. The results revealed that LUCAT1 and YAP1 were upregulated and miR-375 was downregulated in ccRCC tissues and cells. LUCAT1 knockdown suppressed cell proliferation, migration and invasion, which were reversed by the inhibition of miR-375. In addition, YAP1 overexpression attenuated the inhibitory effects of miR-375 overexpression on cell proliferation, migration and invasion. Subsequent experiments suggested that LUCAT1 regulated YAP1 expression by sponging miR-375. Therefore, LUCAT1 exerted its role by regulating the miR-375/YAP1 axis in vitro. Moreover, LUCAT1 knockdown suppressed the growth of ccRCC xenograft tumors in vivo. These results collectively revealed that LUCAT1 promoted the proliferation, migration and invasion of ccRCC by the upregulation of YAP1 via sponging miR-375, which may be used as a potential therapeutic target for ccRCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA