Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.699
Filtrar
1.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767472

RESUMO

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

2.
Cell Mol Life Sci ; 81(1): 210, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717553

RESUMO

The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.


Assuntos
Proliferação de Células , IMP Desidrogenase , Animais , IMP Desidrogenase/metabolismo , IMP Desidrogenase/genética , Camundongos , Desenvolvimento Fetal/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Feminino , Guanosina Trifosfato/metabolismo , Dano ao DNA , Camundongos Endogâmicos C57BL
3.
Nat Plants ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740943

RESUMO

In plants, the rapid accumulation of proline is a common response to combat abiotic stress1-7. Delta-1-pyrroline-5-carboxylate synthase (P5CS) is a rate-limiting enzyme in proline synthesis, catalysing the initial two-step conversion from glutamate to proline8. Here we determine the first structure of plant P5CS. Our results show that Arabidopsis thaliana P5CS1 (AtP5CS1) and P5CS2 (AtP5CS2) can form enzymatic filaments in a substrate-sensitive manner. The destruction of AtP5CS filaments by mutagenesis leads to a significant reduction in enzymatic activity. Furthermore, separate activity tests on two domains reveal that filament-based substrate channelling is essential for maintaining the high catalytic efficiency of AtP5CS. Our study demonstrates the unique mechanism for the efficient catalysis of AtP5CS, shedding light on the intricate mechanisms underlying plant proline metabolism and stress response.

4.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767771

RESUMO

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Assuntos
Isquemia Encefálica , Mitocôndrias , Neurônios , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuína 1 , Sirtuína 3 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Mitocôndrias/metabolismo , Masculino , Sirtuína 3/metabolismo , Sirtuína 3/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Apoptose , Sirtuínas
5.
J Inflamm Res ; 17: 2897-2914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764499

RESUMO

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.

6.
Physiol Plant ; 176(3): e14303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698659

RESUMO

Cotton is an important cash crop for the textile industry. However, the understanding of natural genetic variation of fiber elongation in relation to miRNA is lacking. A miRNA gene (miR477b) was found to co-localize with a previously mapped fiber length (FL) quantitative trait locus (QTL). The miR477b was differentially expressed during fiber elongation between two backcross inbred lines (BILs) differing in FL and its precursor sequences. Bioinformatics and qRT-PCR analysis were further used to analyse the miRNA genes, which could produce mature miR477b. Cotton plants with virus-induced gene silencing (VIGS) constructs to over-express the allele of miR477b from the BIL with longer fibers had significantly longer fibers as compared with negative control plants, while the VIGS plants with suppressed miRNA expression had significantly shorter fibers. The expression level of the target gene (DELLA) and related genes (RDL1 and EXPA1 for DELLA through HOX3 protein) in the two BILs and/or the VIGS plants were generally congruent, as expected. This report represents one of the first comprehensive studies to integrate QTL linkage mapping and physical mapping of small RNAs with both small and mRNA transcriptome analysis, followed by VIGS, to identify candidate small RNA genes affecting the natural variation of fiber elongation in cotton.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , MicroRNAs , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Gossypium/genética , Gossypium/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mapeamento Cromossômico , Inativação Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38750641

RESUMO

BACKGROUND: The liver is the most common organ injured in blunt abdominal trauma and makes up roughly 5% of all trauma admissions. Current treatments are invasive and resource-intensive, which may delay care. We aim to develop and validate a contrast-enhanced ultrasound (CEUS)guided noninvasive tool to treat liver lacerations at the bedside. METHODS: Two 1.8 MHz high-intensity focused ultrasound (HIFU) elements were coupled to a C1-6 diagnostic ultrasound probe and a Logiq E10 scanner (GE HealthCare) utilizing a custom enclosure for co-registered imaging and ablation. A phantom was created from polyacrylamide gel combined with thermochromic ink whose color changes above biological ablative temperatures (60 °C). The HIFU wave was focused approximately 0.5 cm below the surface utilizing a 50% duty cycle generating 11.9 MPa for 20, 30, 40, 50, and 60s. Experiments were repeated on ex vivo chicken livers in a water bath. Finally, the livers of 4 live swine underwent up to 6 CEUS-guided treatments using parameters optimized from in vitro work. RESULTS: Treatment of the phantom between 20-60s, produced ablation sizes from 0.016 to 0.4 cm 3 . The relationship between time and size was exponential (R 2 = 0.992). Ablation areas were also well visualized on with ultrasound imaging. The ex vivo liver ablation size at 20s was 0.37 cm 3 , at 30s was 0.66 cm 3 , and at 100 s was 5.0 cm 3 . For the in-vivo swine experiments, the average ablation area measured 2.0x0.75 cm with a maximum of 3.5x1.5 cm. CEUS was utilized with the contrast agent Definity (Lantheus) for identification of lacerations as well as immediate post operative evaluation of therapy. CONCLUSION: These experiments demonstrate the feasibility of CEUS guided transdermal HIFU ablation and the time-dependent size of ablation. This work warrants future investigations into using ultrasound to detect active bleeding and HIFU to coagulate grade III and IV liver laceration. STUDY TYPE: Therapeutic/care management.

8.
BMC Oral Health ; 24(1): 518, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698370

RESUMO

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) is a microbial risk factor whose presence increases the risk of oral squamous cell carcinoma (OSCC) progression. However, whether it can promote the proliferation of OSCC cells remains unknown. METHODS: In this study, we investigated F. nucleatum effect on OSCC cell proliferation using in vitro and in vivo experiments. RESULTS: Our results showed that F. nucleatum promoted OSCC cell proliferation, doubling the cell count after 72 h (CCK-8 assay). Cell cycle analysis revealed G2/M phase arrest. F. nucleatum interaction with CDH1 triggered phosphorylation, upregulating downstream protein ß-catenin and activating cyclinD1 and Myc. Notably, F. nucleatum did not affect noncancerous cells, unrelated to CDH1 expression levels in CAL27 cells. Overexpression of phosphorylated CDH1 in 293T cells did not upregulate ß-catenin and cycle-related genes. In vivo BALB/c nude experiments showed increased tumor volume and Ki-67 proliferation index after F. nucleatum intervention. CONCLUSION: Our study suggests that F. nucleatum promotes OSCC cell proliferation through the CDH1/ß-catenin pathway, advancing our understanding of its role in OSCC progression and highlighting its potential as a therapeutic target.


Assuntos
Caderinas , Carcinoma de Células Escamosas , Proliferação de Células , Fusobacterium nucleatum , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais , beta Catenina , Caderinas/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/microbiologia , beta Catenina/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiologia , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Transdução de Sinais
9.
Small ; : e2401485, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712455

RESUMO

Dual channel photo-driven H2O2 production in pure water on small-scale on-site setups is a promising strategy to provide low-concentrated H2O2 whenever needed. This process suffers, however, strongly from the fast recombination of photo-generated charge carriers and the sluggish oxidation process. Here, insoluble Keggin-type cesium phosphomolybdate Cs3PMo12O40 (abbreviated to Cs3PMo12) is introduced to carbonized cellulose (CC) to construct S-scheme heterojunction Cs3PMo12/CC. Dual channel H2O2 photosynthesis from both H2O oxidation and O2 reduction in pure water has been thus achieved with the production rate of 20.1 mmol L-1 gcat. -1 h-1, apparent quantum yield (AQY) of 2.1% and solar-to-chemical conversion (SCC) efficiency of 0.050%. H2O2 accumulative concentration reaches 4.9 mmol L-1. This high photocatalytic activity is guaranteed by unique features of Cs3PMo12/CC, namely, S-scheme heterojunction, electron reservoir, and proton reservoir. The former two enhance the separation of photo-generated charge carriers, while the latter speeds up the torpid oxidation process. In situ experiments reveal that H2O2 is formed via successive single-electron transfer in both channels. In real practice, exposing the reaction system under natural sunlight outdoors successfully results in 0.24 mmol L-1 H2O2. This work provides a key practical strategy for designing photocatalysts in modulating redox half-reactions in photosynthesis.

10.
J Hosp Med ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742528

RESUMO

BACKGROUND: Patients newly initiated on opioids (OP), benzodiazepines (BZD), and antipsychotics (AP) during hospitalization are often prescribed these on discharge. Implications of this practice on outcomes remains unexplored. OBJECTIVE: To explore the prevalence and risk factors of new initiation of select OP, BZD and AP among patients requiring in-patient stays. Test the hypothesis that new prescriptions are associated with higher odds of readmission or death within 28 days of discharge. DESIGN: Single center retrospective cohort study. SETTING AND PARTICIPANTS: Patients admitted to a tertiary-level medical center with either a primary diagnosis of RT-PCR positive for COVID-19 or high index of clinical suspicion thereof. INTERVENTION: None. MAIN OUTCOME AND MEASURES: Exposure was the new initiation of select common OP, BZD, and AP which were continued on hospital discharge. Outcome was a composite of 28-day readmission or death following index admission. Multivariable logistic regression was used to assess patient mortality or readmission within 28 days of discharge associated with new prescriptions at discharge. RESULTS: One thousand three hundred and nineteen patients were included in the analysis. 11.3% (149/1319) were discharged with a new prescription of select OP, BZD, or AP either alone or in combination. OP (110/149) were most prescribed followed by BZD (41/149) and AP (22/149). After adjusting for unbalanced confounders, new prescriptions (adjusted odds ratio: 2.44, 95% confidence interval: 1.42-4.12; p = .001) were associated with readmission or death within 28 days of discharge. One in nine patients admitted with a diagnosis of COVID-19 or high clinical suspicion thereof were discharged with a new prescription of either OP, BZD or AP. New prescriptions were associated with higher odds of 28-day readmission or death. Strengthening medication reconciliation processes focused on these classes may reduce avoidable harm.

11.
Yale J Biol Med ; 97(1): 41-48, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559457

RESUMO

The intricate steps of human ocular embryology are impacted by cellular and genetic signaling pathways and a myriad of external elements that can affect pregnancy, such as environmental, metabolic, hormonal factors, medications, and intrauterine infections. This review focuses on presenting some of these factors to recognize the multifactorial nature of ocular development and highlight their clinical significance. This review is based on English-language articles sourced from PubMed, Web of Science, and Google Scholar; keywords searched included "ocular development in pregnancy," "ocular embryology," "maternal nutrition," "ophthalmic change," and "visual system development." While some animal models show the disruption of ocular embryology from these external factors, there are limited post-birth assessments in human studies. Much remains unknown about the precise mechanisms of how these external factors can disrupt normal ocular development in utero, and more significant research is needed to understand the pathophysiology of these disruptive effects further. Findings in this review emphasize the importance of additional research in understanding the dynamic association between factors impacting gestation and neonatal ocular development, particularly in the setting of limited resources.


Assuntos
Olho , Exposição Materna , Animais , Feminino , Humanos , Recém-Nascido , Gravidez , Olho/embriologia
12.
World J Stem Cells ; 16(3): 245-256, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38577237

RESUMO

Mesenchymal stem cells (MSCs) are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts, chondrocytes and adipocytes. The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes, in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes. Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis. However, the mechanism underlying the adipogenic differentiation of MSCs is not fully understood. Here, the current knowledge of adipogenic differentiation in MSCs is reviewed, focusing on signaling pathways, noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation. Finally, the relationship between maladipogenic differentiation and diseases is briefly discussed. We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.

13.
RSC Adv ; 14(16): 11002-11006, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38586440

RESUMO

Carpesabrolide A (1), featuring an unprecedented fumaric acid-guaiane sesquiterpenoid hybrid, has been isolated from the folk medicinal plant Carpesium abrotanoides. The structure with absolute configuration has been established by spectroscopic methods and single crystal X-ray diffraction analysis. The plausible biosynthetic pathway for 1 is proposed. Compound 1 shows significant anti-inflammatory activity by inhibiting NO production with an IC50 value of 2.7 µM.

14.
ACS Sens ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642367

RESUMO

Neuroinflammation is linked closely to neurodegenerative diseases, with reactive oxygen species (ROS) exacerbating neuronal damage. Traditional electrochemical sensors show promise in targeting cellular ROS to understand their role in neuropathogenesis and assess therapies. Nevertheless, these sensors face challenges in mitigating the ROS oxidation overpotential. We herein introduce an ROS oxidation-independent nucleic acid sensor for in situ ROS analysis and therapeutic assessment. The sensor comprises ionizable and thioketal (TK)-based lipids with methylene blue-tagged nucleic acids on a glass carbon electrode. ROS exposure triggers cleavage within the sensor's thioketal moiety, detaching the nucleic acid from the electrode and yielding quantifiable results via square-wave voltammetry. Importantly, the sensor's low potential window minimizes interference, ensuring precise ROS measurements with high selectivity. Using this sensor, we unveil levodopa's dose-dependent biphasic effect on neuroinflammation: low doses alleviate oxidative stress, while high doses exacerbate it. The TK-based sensor offers a promising methodology for investigating neuroinflammation's pathogenesis and screening potential treatments, advancing neurodegenerative disease research.

15.
RSC Adv ; 14(16): 11217-11231, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38590351

RESUMO

The present investigation delves into the adverse environmental impact of atmospheric pollutant gases, specifically nitrogen dioxide (NO2) and sulfur dioxide (SO2), which necessitates the identification and implementation of effective control measures. The central objective of this study is to explore the eradication of these pollutants through the utilization of aluminum Al13 and Al15 metal clusters, distinguished by their unique properties. The comprehensive evaluation of gas/cluster interactions is undertaken employing density functional theory (DFT). Geometric optimization calculations for all structures are executed using the ωB97XD functional and the Def2-svp basis set. To probe various interaction modalities, gas molecule distribution around the metal clusters is sampled using the bee colony algorithm. Frequency calculations employing identical model chemistry validate the precision of the optimization calculations. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) methodologies are applied for the analysis of intermolecular interactions. This research establishes the robust formation of van der Waals attractions between the investigated gas molecules, affirming aluminum metal clusters as viable candidates for the removal and control of these gases.

16.
Exp Ther Med ; 27(5): 233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628660

RESUMO

The present study aimed to elucidate the role of autophagy-related genes (ARGs) in calcific aortic valve disease (CAVD) and their potential interactions with immune infiltration via experimental verification and bioinformatics analysis. A total of three microarray datasets (GSE12644, GSE51472 and GSE77287) were obtained from the Gene Expression Omnibus database, and gene set enrichment analysis was performed to identify the relationship between autophagy and CAVD. After differentially expressed genes and differentially expressed ARGs (DEARGs) were identified using CAVD samples and normal aortic valve samples, a functional analysis was performed, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, protein-protein interaction network construction, hub gene identification and validation, immune infiltration and drug prediction. The results of the present study indicated a significant relationship between autophagy and CAVD. A total of 46 DEARGs were identified. GO and pathway enrichment analyses revealed the complex roles of DEARGs in regulating CAVD, including multiple gene functions and pathways. A total of 10 hub genes were identified, with three (SPP1, CXCL12 and CXCR4) consistently upregulated in CAVD samples compared with normal aortic valve samples in multiple datasets and experimental validation. Immune infiltration analyses demonstrated significant differences in immune cell proportions between CAVD samples and normal aortic valve samples, thus showing the crucial role of immune infiltration in CAVD development. Furthermore, therapeutic drugs were predicted that could target the identified hub genes, including bisphenol A, resveratrol, progesterone and estradiol. In summary, the present study illuminated the crucial role of autophagy in CAVD development and identified key ARGs as potential therapeutic targets. In addition, the observed immune cell infiltration and predicted autophagy-related drugs suggest promising avenues for future research and novel CAVD treatments.

17.
Food Chem ; 450: 139347, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653047

RESUMO

Food freshness monitoring is an important component in ensuring food safety for consumers and the food industry. Therefore, there is an urgent need for a portable, low-cost, and efficient detection method to determine the freshness. In this study, polyvinyl alcohol (PVA) was used as polymer carrier to prepare electrospinning film containing curcumin (Cur) and gardenia blue (GB) as intelligent indicator label on food packaging for real-time nondestructive detection of freshness of shrimp. The detection limit of ammonia response is less than or equal to 20 ppm, and the detection time is about 1 min, indicating that it has a sensitive response effect. At the same time, a smartphone application that can identify amines in response to color changes has been developed, and consumers can understand freshness by scanning the label. This study demonstrates the huge potential of smart indicator labels for food freshness monitoring.

18.
Colloids Surf B Biointerfaces ; 238: 113916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636438

RESUMO

The ureteral stent is an effective treatment for clinical ureteral stricture following urological surgery, and the functional coating of the stent could effectively inhibit bacterial colonization and other complications. The present review provides an analysis and description of the materials used in ureteral stents and their coatings. Emphasis is placed on the technological advancements of functional coatings, taking into consideration the characteristics of these materials and the properties of their active substances. Furthermore, recent advances in enhancing the therapeutic efficacy of functional coatings are also reviewed. It is anticipated that this article will serve as a valuable reference providing insights for future research development on new drug-loaded ureteral stents.


Assuntos
Materiais Revestidos Biocompatíveis , Polímeros , Stents , Ureter , Humanos , Ureter/cirurgia , Polímeros/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais
19.
Cell Metab ; 36(5): 984-999.e8, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642552

RESUMO

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Humanos , Animais , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo
20.
Fish Shellfish Immunol ; 149: 109559, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636737

RESUMO

USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Interferons , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Transdução de Sinais , Ubiquitinação , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Rhabdoviridae/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Imunidade Inata/genética , Ubiquitina Tiolesterase/genética , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Filogenia , Perfilação da Expressão Gênica/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA