Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Imeta ; 3(4): e219, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135696

RESUMO

Body size is a key ecological trait of soil microorganisms related to their adaptation to environmental changes. In this study, we reveal that the smaller microorganisms show stronger community resistance than larger organisms in both maize and rice soil. Compared with larger organisms, smaller microorganisms have higher diversity and broader niche breadth to deploy survival strategies, because of which they are less affected by environmental selection and thus survive in complex and various kinds of environments. In addition, the strong correlation between smaller microorganisms and ecosystem functions reflects their greater metabolic flexibility and illustrates their significant roles in adaptation to continuously changing environments. This research highlights the importance of body size in maintaining stability of the soil microbiome and forecasting agroecosystem dynamics under environmental disturbances.

2.
Environ Int ; 183: 108429, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219540

RESUMO

An increasing number of anthropogenic pressures can have negative effects on biodiversity and ecosystem functioning. However, our understanding of how soil microbial communities and functions in response to multiple global change factors (GCFs) is still incomplete, particularly in less frequently disturbed subsoils. In this study, we examined the impact of different levels of GCFs (0-9) on soil functions and bacterial communities in both topsoils (0-20 cm) and subsoils (20-40 cm) of an agricultural ecosystem, and characterized the intrinsic factors influencing community resistance based on microbial life history strategy. Our experimental results showed a decline in soil multifunctionality, bacterial diversity, and community resistance as the number of GCFs increased, with a more drastic reduction in community resistance of subsoils. Specifically, we observed a significantly positive relationship between the oligotroph/copiotroph ratio and community resistance in subsoils, which was also verified by the negative correlation between 16S rRNA operon (rrn) copy number and community resistance. Structural equation modeling further revealed the direct effects of community resistance in promoting the ecosystem functioning, regardless of top- and subsoils. Therefore, these results suggested that subsoils may recruit more oligotrophic microbes to enhance their originally weaker community resistance under multiple GCFs, which was essential for maintaining sustainable agroecological functions and services. Overall, our study represents a significant advance in linking microbial life history strategy to the resistance of belowground microbial community and functionality.


Assuntos
Ecossistema , Microbiota , RNA Ribossômico 16S , Microbiologia do Solo , Biodiversidade , Solo/química , Bactérias
3.
Plant Cell Environ ; 46(11): 3542-3557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37564021

RESUMO

Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.

4.
Sci Total Environ ; 856(Pt 1): 158939, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36170917

RESUMO

Global nitrogen deposition has increased significantly in recent years. At present, research on the effects of different amounts and types of nitrogen deposition on soil microorganisms in coastal wetlands is scarce. In this study, based on 7 years of simulated nitrogen deposition at multiple levels (low, medium, high) and of multiple types (NH4NO3, NH4Cl, KNO3), the effects of different nitrogen deposition conditions on the diversity, community assembly processes, co-networks, and community function of soil prokaryotes in coastal wetlands were examined. The results showed that, compared with that in control, the microbial α diversity increased significantly under nitrogen deposition (P < 0.05). However, it decreased significantly in the high-NH4NO3 and high-NH4Cl treatments (P < 0.05). The deterministic process of community assembly was strengthened under the different types of nitrogen deposition. Compared with that under NH4+-N deposition, the microbial co-network under NO3--N deposition was more complex. Network stability significantly decreased under different NH4+-N deposition levels. In addition, the results of FAPROTAX functional prediction showed that microbial community functional groups associated with carbon and nitrogen cycling changed significantly (P < 0.05). In conclusion, our results emphasize that nitrogen deposition environments cause changes in soil microbial community structure and interactions, and may also affect soil carbon and nitrogen cycling, but the effects of different forms and levels of nitrogen deposition are not consistent. This study provides new insights for evaluating the changes in soil microbial communities in coastal wetlands caused by different types of long-term nitrogen deposition, and has scientific significance for assessing the ecological effects of long-term nitrogen deposition.


Assuntos
Nitrogênio , Áreas Alagadas , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Carbono
5.
Front Microbiol ; 13: 1024686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386656

RESUMO

Integrated soil-crop management (ISCM) has been shown as an effective strategy to increase efficiency and yield while its soil microbial community structure and function remain unclear. We evaluated changes in soil physicochemical factors, bacterial community structure responses, and the contributions of soil properties and bacterial communities to summer maize-winter wheat yield and GHG emissions through an ISCM experiment [T1 (local smallholder farmers practice system), T2 (improved management system), T3 (high-yield production system), and T4 (optimized management system)], which could provide scientific guidance for sustainable development of soil in summer maize-winter wheat rotation system. The results showed that the optimized ISCM could improve the soil quality, which significantly changed the soil bacterial community structure to reduce GHG emissions and increase yield. The co-occurrence network density of T3 was increased significantly. The Acidobacteria (class) and OM190 (class) were enriched in T2 and T4. The Frankiales (order) and Gaiellales (order) were enriched in T3. However, the changes in different crop growth stages were different. At the wheat jointing stage and maize mature stage, T4 could enhance carbon-related functional groups, such as aromatic hydrocarbon degradation and hydrocarbon degradation, to increase the soil organic carbon content. And at the maize tasseling stage, T4 could enhance nitrogen-related functional groups. And soil bacteria structure and function indirectly affected annual yield and GHG emission. T2 and T4 exhibited a similar soil microbial community. However, the yield and nitrogen use efficiency of T2 were reduced compared to those of T4. The yield of T3 was the highest, but the GHG emission increased and soil pH and nitrogen use efficiency decreased significantly. Therefore, T4 was a suitable management system to improve soil quality and soil bacterial community structure and function to decrease GHG emissions and increase the yield of the summer maize-winter wheat rotation system.

6.
Microbiol Spectr ; 10(4): e0134922, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950864

RESUMO

Root-associated microorganisms are widely recognized as playing an important role in mitigating stress-induced damage to plants, but the responses of rhizosphere microbial communities after inoculation and their relationship with plant responses remain unclear. In this study, the bacterium Providencia vermicola BR68 and the fungus Sarocladium kiliense FS18 were selected from among 91 strains isolated from the halophyte Suaeda salsa to interact with maize seedlings under salt stress. The results showed that compared with NaCl-only treatment, inoculation with strains BR68 and FS18 significantly improved the growth, net photosynthetic rate, and antioxidant enzyme activities of maize; significantly reduced proline content and generation rate of reactive oxygen species (ROS); and alleviated oxidative stress and osmotic stress. Moreover, inoculation with these two strains increased the activities of soil microbiome enzymes such as sucrase, catalase, and fluorescein diacetate hydrolase, which improved maize physiologies and promoted maize growth under salt stress. In addition, these inoculated strains significantly affected the abundance of certain genera, and the correlation trends for these genera with soil properties and maize physiologies were similar to those of these inoculated strains. Strain BR68 was indirectly associated with bacterial communities through BR-specific biomarkers, and bacterial communities and soil properties explained most of the variation in maize physiologies and growth. Inoculation of strain FS18 was directly associated with variations in soil properties and maize physiologies. The two strains improved maize growth under salt stress and alleviated stress damage in maize in different ways. The links among salt-tolerant microorganisms, soil, and plants established in this study can inform strategies for improving crop cultivation in salinized lands. IMPORTANCE This study demonstrates that halophyte root-associated microorganisms can promote crop tolerance to salt stress and clarify the mechanism by which the strains work in rhizosphere soil. The links among salt-tolerant microorganisms, soil, and plants established in this study can inform strategies for improving crop cultivation in salinized lands.


Assuntos
Chenopodiaceae , Zea mays , Bactérias , Rizosfera , Estresse Salino , Plantas Tolerantes a Sal/microbiologia , Solo , Zea mays/microbiologia
7.
Curr Microbiol ; 77(8): 1496-1505, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32239287

RESUMO

Water and sediment have always been closely tied in aquatic systems. However, little information regarding the full extent of microeukaryotic composition in both the two habitats did we know especially in estuaries. In the present study, the microeukaryotic abundance, diversity, composition, and their response to environmental factors between sediment and water in the Yellow River Estuary (YRE) were investigated. The microeukaryotic 18S rRNA gene abundance ranged from 1.03 × 106 to 5.48 × 107 copies/g dry for sediment, and 3.01 × 104 to 1.25 × 106 copies/mL for water. The distribution patterns of eukaryotic microorganisms could be clustered into two different branches. And the compositions of microeukaryotes in the two habitats were distinct obviously. Metazoa, Fungi, Streptophyta, Ochrophyta, Cercozoa, and Dinophyta were more abundant in sediment. The dominant phyla in water were Dinophyta, followed by Metazoa, Ochrophyta, Cryptophyta, Chloroplyta, Cercozoa, Fungi, Katablepharidophyta, Choanoflagellida, and Haptophyta. Interestingly, the eukaryotic microorganisms detected in sediment were much less sensitive to environmental variables compared with water. Furthermore, their potential co-occurrence networks in particular were also discovered in the present study. As such, we have provided baseline data to support further research on estuarine microeukaryotes in both sediment and water, which was useful for guiding the practical application of ecosystem management and biodiversity protection.


Assuntos
Estuários , Eucariotos/classificação , Sedimentos Geológicos , Microbiota , Microbiologia da Água , China , RNA Ribossômico 18S/genética , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA