Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Radiat Res ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818645

RESUMO

To investigate the levels of 131I activity in thyroid of workers at the place of radioiodine therapy and their main influential factors in China, 341 workers at 38 hospitals performing radioiodine therapy procedure in five provinces were recruited to be measured in 2021. A hand-held gamma spectrometer with NaI(Tl) probe was plastered to the thyroids and thighs of the subjects during the measurement, and each measurement time was 120 s. The internal exposure dose was calculated, and the committed effective dose was estimated. In 86 (25.22%) of the 341 examined workers, 131I thyroid activity was above minimum detectable activity (MDA, 26.6 Bq). The maximum activity was 4.9 × 103 Bq. The detection results above MDA were at 22 (57.89%) different hospitals. The detectable rate for private hospitals (4.8%) was significantly lower than that for public hospitals (26.6%), P < 0.05. The detectable rate for hospitals in provincial capital cities (15.4%) was significantly lower than in nonprovincial capital cities (41.7%), P < 0.001. The detectable rate for hospitals engaged in 131I therapy for thyroid cancer (31.2%) was significantly higher than only for hyperthyroidism (10.3%), P < 0.001. A total of 32 subjects' committed effective dose might exceed 1 mSv. Results indicated the 131I activity in the thyroid of workers at the place of radioiodine varied considerably in China, and mainly related to ownership, location and therapy program of the hospitals.

2.
Dev Cell ; 59(11): 1363-1378.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579719

RESUMO

The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.


Assuntos
Germinação , Oryza , Peroxissomos , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Germinação/fisiologia , Peroxissomos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Coenzima A Ligases/metabolismo , Ácidos Indolacéticos/metabolismo , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Cinamatos/metabolismo
3.
Plant Commun ; : 100880, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486455

RESUMO

Arabidopsis plants adapt to warm temperatures by promoting hypocotyl growth primarily through the basic helix-loop-helix transcription factor PIF4 and its downstream genes involved in auxin responses, which enhance cell division. In the current study, we discovered that cell wall-related calcium-binding protein 2 (CCaP2) and its paralogs CCaP1 and CCaP3 function as positive regulators of thermo-responsive hypocotyl growth by promoting cell elongation in Arabidopsis. Interestingly, mutations in CCaP1/CCaP2/CCaP3 do not affect the expression of PIF4-regulated classic downstream genes. However, they do noticeably reduce the expression of xyloglucan endotransglucosylase/hydrolase genes, which are involved in cell wall modification. We also found that CCaP1/CCaP2/CCaP3 are predominantly localized to the plasma membrane, where they interact with the plasma membrane H+-ATPases AHA1/AHA2. Furthermore, we observed that vanadate-sensitive H+-ATPase activity and cell wall pectin and hemicellulose contents are significantly increased in wild-type plants grown at warm temperatures compared with those grown at normal growth temperatures, but these changes are not evident in the ccap1-1 ccap2-1 ccap3-1 triple mutant. Overall, our findings demonstrate that CCaP1/CCaP2/CCaP3 play an important role in controlling thermo-responsive hypocotyl growth and provide new insights into the alternative pathway regulating hypocotyl growth at warm temperatures through cell wall modification mediated by CCaP1/CCaP2/CCaP3.

4.
Plant Cell Environ ; 47(5): 1852-1864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334305

RESUMO

Zinc (Zn) deficiency not only impairs plant growth and development but also has negative effects on human health. Rice (Oryza Sativa L.) is a staple food for over half of the global population, yet the regulation of Zn deficiency response in rice remains largely unknown. In this study, we provide evidence that two F-group bZIP transcription factors, OsbZIP48/50, play a crucial role in Zn deficiency response. Mutations in OsbZIP48/50 result in impaired growth and reduced Zn/Fe/Cu content under Zn deficiency conditions. The N-terminus of OsbZIP48/OsbZIP50 contains two Zn sensor motifs (ZSMs), deletion or mutation of these ZSMs leads to increased nuclear localization. Both OsbZIP48 and OsbZIP50 exhibit transcriptional activation activity, and the upregulation of 1117 genes involved in metal uptake and other processes by Zn deficiency is diminished in the OsbZIP48/50 double mutant. Both OsbZIP48 and OsbZIP50 bind to the promoter of OsZIP10 and activate the ZDRE cis-element. Amino acid substitution mutation of the ZSM domain of OsbZIP48 in OsbZIP50 mutant background increases the content of Zn/Fe/Cu in brown rice seeds and leaves. Therefore, this study demonstrates that OsbZIP48/50 play a crucial role in regulating metal homoeostasis and identifies their downstream genes involved in the Zn deficiency response in rice.


Assuntos
Oryza , Zinco , Humanos , Zinco/metabolismo , Oryza/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Metais/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
6.
Sci Bull (Beijing) ; 69(1): 59-71, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38044192

RESUMO

Rice (Oryza sativa L.) production is threatened by global warming associated with extreme high temperatures, and rice heat sensitivity is differed when stress occurs between daytime and nighttime. However, the underlying molecular mechanism are largely unknown. We show here that two glycine-rich RNA binding proteins, OsGRP3 and OsGRP162, are required for thermotolerance in rice, especially at nighttime. The rhythmic expression of OsGRP3/OsGRP162 peaks at midnight, and at these coincident times, is increased by heat stress. This is largely dependent on the evening complex component OsELF3-2. We next found that the double mutant of OsGRP3/OsGRP162 is strikingly more sensitive to heat stress in terms of survival rate and seed setting rate when comparing to the wild-type plants. Interestingly, the defect in thermotolerance is more evident when heat stress occurred in nighttime than that in daytime. Upon heat stress, the double mutant of OsGRP3/OsGRP162 displays globally reduced expression of heat-stress responsive genes, and increases of mRNA alternative splicing dominated by exon-skipping. This study thus reveals the important role of OsGRP3/OsGRP162 in thermotolerance in rice, and unravels the mechanism on how OsGRP3/OsGRP162 regulate thermotolerance in a diurnal manner.


Assuntos
Oryza , Termotolerância , Termotolerância/genética , Oryza/genética , Processamento Alternativo/genética , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/genética , Glicina/genética
7.
J Integr Plant Biol ; 66(1): 54-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141041

RESUMO

Plants are highly susceptible to abiotic stresses, particularly heat stress during the reproductive stage. However, the specific molecular mechanisms underlying this sensitivity remain largely unknown. In the current study, we demonstrate that the Nuclear Transcription Factor, X-box Binding Protein 1-Like 1 (NFXL1), directly regulates the expression of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2A (DREB2A), which is crucial for reproductive thermotolerance in Arabidopsis. NFXL1 is upregulated by heat stress, and its mutation leads to a reduction in silique length (seed number) under heat stress conditions. RNA-Seq analysis reveals that NFXL1 has a global impact on the expression of heat stress responsive genes, including DREB2A, Heat Shock Factor A3 (HSFA3) and Heat Shock Protein 17.6 (HSP17.6) in flower buds. Interestingly, NFXL1 is enriched in the promoter region of DREB2A, but not of either HSFA3 or HSP17.6. Further experiments using electrophoretic mobility shift assay have confirmed that NFXL1 directly binds to the DNA fragment derived from the DREB2A promoter. Moreover, effector-reporter assays have shown that NFXL1 activates the DREB2A promoter. The DREB2A mutants are also heat stress sensitive at the reproductive stage, and DEREB2A is epistatic to NFXL1 in regulating thermotolerance in flower buds. It is known that HSFA3, a direct target of DREB2A, regulates the expression of heat shock proteins genes under heat stress conditions. Thus, our findings establish NFXL1 as a critical upstream regulator of DREB2A in the transcriptional cassette responsible for heat stress responses required for reproductive thermotolerance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/metabolismo , Termotolerância/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo
8.
Stress Biol ; 3(1): 19, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676358

RESUMO

High temperature stress poses significant adverse effects on crop yield and quality. Yet the molecular mechanisms underlying heat stress tolerance in plants/crops, especially regarding the organellar remodeling and homeostasis, are largely unknown. In a recent study, Zhou et al. reported that autophagy-related 8 (ATG8), a famous regulator involved in autophagy, plays a new role in Golgi restoration upon heat stress. Golgi apparatus is vacuolated following short-term acute heat stress, and ATG8 is translocated to the dilated Golgi membrane and interacts with CLATHRIN LIGHT CHAIN 2 (CLC2) to facilitate Golgi restoration, which is dependent on the ATG conjugation system, but not of the upstream autophagic initiators. These exciting findings broaden the fundamental role of ATG8, and elucidate the organelle-level restoration mechanism of Golgi upon heat stress in plants.

9.
Plant Sci ; 334: 111777, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353008

RESUMO

Adverse environmental stresses may cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), and the unfolded protein response (UPR) pathway is initiated to mitigate the ER stress. Previous studies demonstrate that NAC062, a plasma membrane-associated transcription factor, plays important roles in promoting cell survival under ER stress conditions in Arabidopsis thaliana. In this study, we identified another plasma membrane-associated transcription factor, NAC091 (also known as ANAC091/TIP), as an important UPR mediator. ER stress induces the expression of NAC091, which is mainly dependent on the ER stress regulators bZIP60 and bZIP28. In addition, NAC091 has transcriptional activation activity, and the truncated form of NAC091 devoid of the C-terminal transmembrane domain (TMD) forms a homodimer in the nucleus. Under ER stress conditions, NAC091 relocates from the plasma membrane to the nucleus and regulates the expression of canonical UPR genes involved in cell survival. Further, the loss-of-function mutant of NAC091 confers impaired ER stress tolerance. Together, these results reveal the important role of NAC091 in ER stress response in Arabidopsis, and demonstrate that NAC091 relays the ER stress signal from the plasma membrane to the nucleus to alleviate ER stress and promote cell survival in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta a Proteínas não Dobradas , Membrana Celular/metabolismo
10.
Plant Cell Environ ; 46(4): 1087-1103, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36478590

RESUMO

Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.


Assuntos
Oryza , Oryza/fisiologia , Resposta ao Choque Térmico , Temperatura Alta , Reprodução , Grão Comestível
11.
New Phytol ; 237(1): 177-191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028981

RESUMO

Global warming has profound impact on growth and development, and plants constantly adjust their internal circadian clock to cope with external environment. However, how clock-associated genes fine-tune thermoresponsive growth in plants is little understood. We found that loss-of-function mutation of REVEILLE5 (RVE5) reduces the expression of circadian gene EARLY FLOWERING 4 (ELF4) in Arabidopsis, and confers accelerated hypocotyl growth under warm-temperature conditions. Both RVE5 and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) accumulate at warm temperatures and bind to the same EE cis-element presented on ELF4 promoter, but the transcriptional repression activity of RVE5 is weaker than that of CCA1. The binding of CCA1 to ELF4 promoter is enhanced in the rve5-2 mutant at warm temperatures, and overexpression of ELF4 in the rve5-2 mutant background suppresses the rve5-2 mutant phenotype at warm temperatures. Therefore, the transcriptional repressor RVE5 finetunes ELF4 expression via competing at a cis-element with the stronger transcriptional repressor CCA1 at warm temperatures. Such a competition-attenuation mechanism provides a balancing system for modulating the level of ELF4 and thermoresponsive hypocotyl growth under warm-temperature conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Hipocótilo , Relógios Circadianos/genética , Ritmo Circadiano/genética
12.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430782

RESUMO

Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56-400 µg/mL for 24 h, with an IC50 of 275 µg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 µg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-ß-galactosidase activity and related proinflammatory cytokine IL-1ß and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging.


Assuntos
Retardadores de Chama , Envelhecimento da Pele , Humanos , Senescência Celular , Retardadores de Chama/toxicidade , Queratinócitos/metabolismo , Compostos Organofosforados/toxicidade , Compostos Organofosforados/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
aBIOTECH ; 3(1): 1-11, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36304196

RESUMO

High temperature elicits a well-conserved response called the unfolded protein response (UPR) to bring protein homeostasis in the endoplasmic reticulum (ER). Two key UPR regulators bZIP28 and bZIP60 have been shown to be essential for maintaining fertility under heat stress conditions in Arabidopsis, however, the function of transcriptional activator bZIP17, a paralog of bZIP28, in heat stress response at reproductive stage is not reported. Here we found that bzip17 mutant plants were sensitive to heat stress in terms of silique length and fertility comparing to that of wildtype (WT) Arabidopsis plants, and transcriptomic analysis showed that 1380 genes were specifically up-regulated and 493 genes were specifically down-regulated by heat stress in the flowers of WT plants comparing to that in bzip17 mutant plants. These bZIP17-dependent up-regulated genes were enriched in responses to abiotic stresses such as water deprivation and salt stress. Further chromatin immuno-precipitation coupled with high-throughput sequencing (ChIP-Seq) uncovered 1645 genes that were direct targets of bZIP17 in MYC-bZIP17 expressing seedlings subjected to heat stress. Among these 1645 genes, ERSE-II cis-element was enriched in the binding peaks of their promoters, and the up-regulation of 113 genes by heat stress in flowers was dependent on bZIP17. Our results revealed direct targets of bZIP17 in flowers during heat stress responses and demonstrated the important role of bZIP17 in maintaining fertility upon heat stress in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00062-1.

14.
aBIOTECH ; 3(2): 140-145, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36304519

RESUMO

Weeds are a major biotic constraint that can cause dramatic crop production losses. Herbicide technology has been widely used by farmers as the most cost-effective weed control measure, and development of new strategy to improve herbicide tolerance in plants is urgently needed. The CRISPR/Cas9-based genome editing tool has been used in diverse applications related to agricultural technology for crop improvement. Here we identified three polyamine uptake transporter (PUT) genes in rice that are homologous to the Arabidopsis AtRMV1. We successfully demonstrate that CRISPR/Cas9-targeted mutagenesis of OsPUT1/2/3 greatly improves paraquat resistance in rice without obvious yield penalty. Therefore, manipulation of these loci could be valuable for producing transgene-free rice with improved herbicide resistance in future. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-022-00075-4.

15.
World J Gastroenterol ; 28(30): 4163-4173, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36157106

RESUMO

BACKGROUND: The critical diagnostic criteria for esophagogastric junction outflow obstruction (EGJOO) were published in the latest Chicago Classification version 4.0 (CCv4.0). In addition to the previous criterion [elevated integrated relaxation pressure (IRP) in supine position], manometric diagnosis of EGJOO requires meeting the criteria of elevated median-IRP during upright wet swallows and elevated intrabolus pressure. However, with the diagnostic criteria modification, the change in manometric features of EGJOO remained unclear. AIM: To evaluate the esophageal motility characteristics of patients with EGJOO and select valuable parameters for confirming the diagnosis of EGJOO. METHODS: We performed a retrospective analysis of 370 patients who underwent high-resolution manometry with 5 mL water swallows × 10 in supine, × 5 in upright position and the rapid drink challenge (RDC) with 200 mL water from November 2016 to November 2021 at Peking University First Hospital. Fifty-one patients with elevated integrated supine IRP and evidence of peristalsis were enrolled, with 24 patients meeting the updated manometric EGJOO diagnosis (CCv4.0) as the EGJOO group and 27 patients not meeting the updated EGJOO criteria as the isolated supine IRP elevated group (either normal median IRP in upright position or less than 20% of supine swallows with elevated IBP). Forty-six patients with normal manometric features were collected as the normal high-resolution manometry (HRM) group. Upper esophageal sphincter (UES), esophageal body, and lower esophageal sphincter (LES) parameters were compared between groups. RESULTS: Compared with the normal HRM group, patients with EGJOO (CCv4.0) had significantly lower proximal esophageal contractile integral (PECI) and proximal esophageal length (PEL), with elevated IRP on RDC (P < 0.05 for each comparison), while isolated supine IRP elevated patients had no such feature. Patients with EGJOO also had more significant abnormalities in the esophagogastric junction than isolated supine IRP elevated patients, including higher LES resting pressure (LESP), intrabolus pressure, median supine IRP, median upright IRP, and IRP on RDC (P < 0.05 for each comparison). Patients with dysphagia had significantly lower PECI and PEL than patients without dysphagia among the fifty-one with elevated supine IRP. Further multivariate analysis revealed that PEL, LESP, and IRP on RDC are factors associated with EGJOO. The receiver-operating characteristic analysis showed UES nadir pressure, PEL, PECI, LESP, and IRP on RDC are parameters supportive for confirming the diagnosis of EGJOO. CONCLUSION: Based on CCv4.0, patients with EGJOO have more severe esophagogastric junction dysfunction and are implicated in the proximal esophagus. Additionally, several parameters are supportive for confirming the diagnosis of EGJOO.


Assuntos
Transtornos de Deglutição , Transtornos da Motilidade Esofágica , Gastropatias , Transtornos da Motilidade Esofágica/complicações , Esfíncter Esofágico Inferior , Junção Esofagogástrica , Humanos , Manometria , Estudos Retrospectivos , Gastropatias/complicações , Água
16.
New Phytol ; 236(3): 958-973, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35872572

RESUMO

Suberin in roots acts as a physical barrier preventing water/mineral losses. In Arabidopsis, root suberization is regulated by abscisic acid (ABA) and ethylene in response to nutrient stresses. ABA also mediates coordination between microbiota and root endodermis in mineral nutrient homeostasis. However, it is not known whether this regulatory system is common to plants in general, and whether there are other key molecule(s) involved. We show that serotonin acts downstream of ABA in regulating suberization in rice and Arabidopsis and negatively regulates suberization in rice roots in response to salinity. We show that ABA represses transcription of the key gene (OsT5H) in serotonin biosynthesis, thus promoting root suberization in rice. Conversely, overexpression of OsT5H or supplementation with exogenous serotonin represses suberization and reduces tolerance to salt stress. These results identify an ABA-serotonin regulatory module controlling root suberization in rice and Arabidopsis, which is likely to represent a general mechanism as ABA and serotonin are ubiquitous in plants. These findings are of significant importance to breeding novel crop varieties that are resilient to abiotic stresses and developing strategies for production of suberin-rich roots to sequestrate more CO2 , helping to mitigate the effects of climate change.


Assuntos
Arabidopsis , Oryza , Ácido Abscísico/farmacologia , Arabidopsis/fisiologia , Dióxido de Carbono/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Salinidade , Tolerância ao Sal , Serotonina/farmacologia , Estresse Fisiológico , Água/farmacologia
17.
J Integr Plant Biol ; 64(7): 1297-1302, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524486

RESUMO

During recovery from heat stress, plants clear away the heat-stress-induced misfolded proteins through the ubiquitin-proteasome system (UPS). In the UPS, the recognition of substrate proteins by E3 ligase can be regulated by the N-terminal acetyltransferase A (NatA) complex. Here, we determined that Arabidopsis STRESS-RELATED UBIQUITIN-ASSOCIATED-DOMAIN PROTEIN FACTOR 1 (SUF1) interacts with the NatA complex core subunit NAA15 and positively regulates NAA15. The suf1 and naa15 mutants are sensitive to heat stress; the NatA substrate N SNC1 is stabilized in suf1 mutant plants during heat stress recovery. Therefore, SUF1 and its interactor NAA15 play important roles in basal thermotolerance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Termotolerância/genética , Ubiquitinas/metabolismo
18.
J Integr Plant Biol ; 64(7): 1310-1324, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603836

RESUMO

The circadian clock maintains the daily rhythms of plant growth and anticipates predictable ambient temperature cycles. The evening complex (EC), comprising EARLY FLOWERING 3 (ELF3), ELF4, and LUX ARRHYTHMO, plays an essential role in suppressing thermoresponsive hypocotyl growth by negatively regulating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) activity and its downstream targets in Arabidopsis thaliana. However, how EC activity is attenuated by warm temperatures remains unclear. Here, we demonstrate that warm temperature-induced REVEILLE 7 (RVE7) fine-tunes thermoresponsive growth in Arabidopsis by repressing ELF4 expression. RVE7 transcript and RVE7 protein levels increased in response to warm temperatures. Under warm temperature conditions, an rve7 loss-of-function mutant had shorter hypocotyls, while overexpressing RVE7 promoted hypocotyl elongation. PIF4 accumulation and downstream transcriptional effects were reduced in the rve7 mutant but enhanced in RVE7 overexpression plants under warm conditions. RVE7 associates with the Evening Element in the ELF4 promoter and directly represses its transcription. ELF4 is epistatic to RVE7, and overexpressing ELF4 suppressed the phenotype of the RVE7 overexpression line under warm temperature conditions. Together, our results identify RVE7 as an important regulator of thermoresponsive growth that functions (in part) by controlling ELF4 transcription, highlighting the importance of ELF4 for thermomorphogenesis in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Hipocótilo/metabolismo , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Plant Cell Physiol ; 63(5): 580-591, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35141744

RESUMO

The chloroplast is essential for photosynthesis, plant growth and development. As semiautonomous organelles, the biogenesis and development of chloroplasts need to be well-regulated during plant growth and stress responses. Low or high ambient temperatures are adverse environmental stresses that affect crop growth and productivity. As sessile organisms, plants regulate the development and function of chloroplasts in a fluctuating temperature environment to maintain normal photosynthesis. This review focuses on the molecular mechanisms and regulatory factors required for chloroplast biogenesis and development under cold or heat stress conditions and highlights the importance of chloroplast gene transcription, RNA metabolism, ribosome function and protein homeostasis essential for chloroplast development under adverse temperature conditions.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Cloroplastos/metabolismo , Fotossíntese/fisiologia , Plantas/genética , Plantas/metabolismo , Temperatura
20.
Stress Biol ; 2(1): 27, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37676550

RESUMO

Rice (Oryza sativa L.) is a staple crop that feeds over half the world's population. High temperature stress is a great threaten to sustainable agriculture and leads to yield loss and impaired grain quality in major crops. Rice is sensitive to heat stress at almost all the growth stages and the molecular mechanisms underlying responses to heat stress in rice is emerging. Through quantitative trait locus (QTL) mapping, a recent study conducted by Zhang et al. shows that one genetic locus Thermo-tolerance 3 (TT3) contains two genes that are required for thermotolerance in rice. The TT3.1-TT3.2 genetic module in rice links the plasma membrane to chloroplasts to protect chloroplasts from heat stress damage and increases grain yield under heat stress conditions. This breakthrough provides a promising strategy for future breeding of high temperature resilient crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA