RESUMO
BACKGROUND: The cause of food allergy (FA) is still a mystery. Telomerases are involved in the regulation of immune responses. This study aims to gain an understanding of the contribution of telomerase reverse transcriptase (TERT) to the pathogenesis of FA. METHODS: A murine FA model was established with ovalbumin as the specific antigen. The role of TERT in regulating dendritic cell (DC) immune tolerogenic functions was evaluated in this murine model. RESULTS: We observed that the Tert promoter was at demethylation status and the Tert expression was elevated in DCs of FA mice. The Tert expression in DCs had a positive correlation with the FA response. TERT prevented the induction of Il10 expression in DCs. The immune tolerogenic functions of DCs were diminished by TERT. The immune tolerogenic functions of DC were restored by CpG by boosting the Tert promoter methylation. Administration of CpG promoted the therapeutic effects of allergen specific immunotherapy in FA mice. CONCLUSIONS: Low levels of Il10 expression and high levels of Tert expression were observed in intestinal DCs of FA mice. CpG exposure restored the expression of Il10 and increased the therapeutic benefits of allergen-specific immunotherapy.
RESUMO
Allergic rhinitis (AR), a common disease in otolaryngology, is a key risk factor for poorly controlled asthma and many complications, although it is not life-threatening. The negative impact of AR on social productive forces and human health is no less than that of asthma. Dendritic cells (DCs) play an important role in AR. In addition to sharing some of DC's biological characteristics, DCs-derived exosomes (DEXs) can promote the priming and activation of T cells and the maturation and differentiation of T helper type 2 (Th2) cells. Multiple signaling pathways in AR can be modulated by DEXs, which present allergens and participate in allergic immune responses. Anti-allergic drugs can be carried by DEXs to alleviate allergic airway inflammation and treat Th2-mediated AR effectively. Therefore, DEXs are crucial in the pathogenesis and treatment of AR.
Assuntos
Células Dendríticas , Exossomos , Rinite Alérgica , Exossomos/imunologia , Exossomos/metabolismo , Células Dendríticas/imunologia , Humanos , Rinite Alérgica/imunologia , Rinite Alérgica/terapia , Animais , Células Th2/imunologiaRESUMO
Th2 polarization is essential for the pathogenesis of allergic rhinitis (AR). Th2 polarization's mechanism requires further understanding. IL-4 is the primary cytokine involved in Th2 response. Fibroblasts play a role in immune regulation. This study aims to elucidate the role of nasal mucosal fibroblast-derived IL-4 in the induction of Th2 responses. Nasal mucosal tissues were obtained from surgically removed samples from patients with nasal polyps, whether with or without AR. Fibroblasts were isolated from the tissues by flow cytometry cell sorting, and analyzed by RNA sequencing (RNAseq). The data from RNAseq showed that nasal fibroblasts expressed genes of GATA3, CD80, CD83, CD86, STAT6, IL2, IL4, IL5, IL6, IL13 and costimulatory factor. The data were verified by RT-qPCR. The level of gene activity was positively correlated with those of AR-related cytokines present in nasal secretions. Nasal fibroblasts release IL-4 upon activation. Nasal fibroblasts had the ability to transform naive CD4+ T cells into Th2 cells, which can be eliminated by inhibiting IL-4 receptor or CD28 in CD4+ T cells. To sum up, nasal mucosal fibroblasts produce IL-4, which can induce Th2 cell development. The data implicate that nasal fibroblasts are involved in the pathogenesis of nasal allergy.
Assuntos
Fibroblastos , Interleucina-4 , Mucosa Nasal , Rinite Alérgica , Células Th2 , Humanos , Células Th2/imunologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Interleucina-4/metabolismo , Rinite Alérgica/imunologia , Rinite Alérgica/metabolismo , Células Cultivadas , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Pólipos Nasais/imunologia , Ativação Linfocitária , Diferenciação CelularRESUMO
BACKGROUND: Allergen specific immunotherapy (AIT) has been widely used in allergy clinics. The therapeutic effects of it are to be improved. Macrophages occupy the largest proportion of airway immune cells. The aim of this study is to measure the effects of nasal instillation AIT (nAIT) on airway allergy by regulating macrophage functions. METHODS: An airway allergy mouse model was established with the ovalbumin-alum protocol. nAIT was conducted for mice with airway allergy through nasal instillation. The effects of nAIT were compared with subcutaneous injection AIT (SCIT) and sublingual AIT (SLIT). RESULTS: Mice with airway allergy showed the airway allergic response, including lung inflammation, airway hyper responsiveness, serum specific IgE, increase in the amounts of eosinophil peroxidase, mouse mast cell protease-1, and Th2 cytokines in bronchoalveolar lavage fluid. nAIT had a much better therapeutic effect on the airway allergic response than SCIT and SLIT. Mechanistically, we observed better absorption of allergen in macrophages, better production of IL-10 by macrophages, and better immune suppressive functions in macrophages in mice received nAIT than SCIT and SLIT. CONCLUSIONS: The nAIT has a much better therapeutic effect on suppressing the airway allergic response, in which macrophages play a critical role.
RESUMO
Interleukin (IL)-33 is a key driver of T helper 2 (Th2) cell polarization. Endoplasmic reticulum (ER) stress plays a role in the skewed T cell activation. The objective of this project is to elucidate the role of IL-33 derived from macrophages in inducing Th2 polarization in the airways. In this study, bronchoalveolar lavage fluids (BALF) were collected from patients with asthma and healthy control subjects. Macrophages were isolated from the BALF by flow cytometry cell sorting. An asthmatic mouse model was established using the ovalbumin/alum protocol. The results showed that increased IL33 gene activity and ER stress-related molecules in BALF-derived M2a macrophages was observed in asthmatic patients. Levels of IL33 gene activity in M2a cells were positively correlated with levels of asthma response in asthma patients. Sensitization exacerbated the ER stress in the airway macrophages, which increased the expression of IL-33 in macrophages of airway in sensitized mice. Conditional ablation of Il33 or Perk or Atf4 genes in macrophages prevented induction of airway allergy in mice. In conclusion, asthma airway macrophages express high levels of IL-33 and at high ER stress status. Inhibition of IL-33 or ER stress in macrophages can effectively alleviate experimental asthma.
Assuntos
Asma , Estresse do Retículo Endoplasmático , Interleucina-33 , Macrófagos , Células Th2 , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Asma/imunologia , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Polaridade Celular , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/imunologia , Interleucina-33/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Th2/imunologia , Células Th2/metabolismo , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
KEY POINTS: Nasal secretions of allergic rhinitis patients were analyzed by Olink proteomics. Fifteen differentially expressed proteins (DEPs) were identified. The DEPs were significantly correlated with the total nasal symptom scores of patients with allergic rhinitis.
Assuntos
Proteômica , Rinite Alérgica , Humanos , Rinite Alérgica/diagnóstico , Nariz , Mucosa Nasal/metabolismoRESUMO
Dendritic cells (DCs), central participants in the allergic immune response, can capture and present allergens leading to allergic inflammation in the immunopathogenesis of allergic rhinitis (AR). In addition to initiating antigen-specific immune responses, DCs induce tolerance and modulate immune homeostasis. As a special type of DCs, tolerogenic DCs (tolDCs) achieve immune tolerance mainly by suppressing effector T cell responses and inducing regulatory T cells (Tregs). TolDCs suppress allergic inflammation by modulating immune tolerance, thereby reducing symptoms of AR. Activation of the TLR4/IRAK4/NF-κB signaling pathway contributes to the release of inflammatory cytokines, and inhibitors of this signaling pathway induce the production of tolDCs to alleviate allergic inflammatory responses. This review focuses on the relationship between tolDCs and TLR4/IRAK4/NF-κB signaling pathway with AR.
Assuntos
NF-kappa B , Rinite Alérgica , Humanos , Receptor 4 Toll-Like , Quinases Associadas a Receptores de Interleucina-1 , Transdução de Sinais , Inflamação , Células DendríticasRESUMO
Allergic rhinitis (AR) is a common pathological condition in otorhinolaryngology. Its prevalence has been increasing worldwide and is becoming a major burden to the world population. Dendritic cells (DCs) are typically activated and matured after capturing, phagocytosing, and processing allergens during the immunopathogenesis of AR. In addition, the process of DC activation and maturation is accompanied by the production of exosomes, which are cellderived extracellular vesicles (EVs) that can carry proteins, lipids, nucleic acids, and other cargoes involved in intercellular communication and material transfer. In particular, DCderived exosomes (Dex) can participate in allergic immune responses, where the biological substances carried by them can have potentially important implications for both the pathogenesis and treatment of AR. Dex can also be exploited to carry antiallergy agents to effectively treat AR. This provides a novel method to explore the pathogenesis of and treatment strategies for AR further. Therefore, the present review focuses on the origin, composition, function, and biological characteristics of DCs, exosomes, and Dex, in addition to the possible relationship between Dex and AR.
Assuntos
Exossomos , Vesículas Extracelulares , Rinite Alérgica , Humanos , Rinite Alérgica/metabolismo , Alérgenos , Células DendríticasRESUMO
Dendritic cells (DCs) that express T cell immunoglobulin domain molecule-4 (TIM4), a cell surface receptor for phosphatidylserine, induce T helper 2 (TH2) cell responses and allergic reactions. We elucidated the role of the transcription factor X-box-binding protein-1 (XBP1) in the induction of the TH2 cell response through its role in generating TIM4+ DCs. We found that XBP1 was required for TIM4 mRNA and protein expression in airway DCs in response to the cytokine interleukin-2 (IL-2) and that this pathway was required for TIM4 expression on DCs in response to the allergens PM2.5 and Derf1. The IL-2-XBP1-TIM4 axis in DCs contributed to Derf1/PM2.5-induced, aberrant TH2 cell responses in vivo. An interaction between the guanine nucleotide exchange factor Son of sevenless-1 (SOS1) and the GTPase RAS promoted XBP1 and TIM4 production in DCs. Targeting the XBP1-TIM4 pathway in DCs prevented or alleviated experimental airway allergy. Together, these data suggest that XBP1 is required for TH2 cell responses by inducing the development of TIM4+ DCs, which depends on the IL-2-XBP1-SOS1 axis. This signaling pathway provides potential therapeutic targets for the treatment of TH2 cell-dependent inflammation or allergic diseases.
Assuntos
Hipersensibilidade , Interleucina-2 , Humanos , Interleucina-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Th2 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Hipersensibilidade/genética , Hipersensibilidade/metabolismo , Células Dendríticas/metabolismo , Material Particulado/metabolismo , Proteína 1 de Ligação a X-Box/genéticaRESUMO
The pathogenesis of immune tolerance disruption is not fully understood. Galectin-9 (Gal9) has immune regulatory functions. The objective of the present study is to assess the role of Gal9 in maintaining immune tolerance. Blood and intestinal biopsies were taken from patients with food allergy (FA). The status of tolerogenic dendritic cells (tDC) and type 1 regulatory T cells (Tr1 cells) in the samples was evaluated and used as representative parameters of immune tolerance. An FA mouse model was established to assess the role of Gal9 in maintaining immune tolerance. We found that peripheral CD11c+ CD5+ CD1d+ tDC frequency was significantly lower in FA patients as compared to health control (HC) subjects. There was no significant change in CD11c+ DC frequency between the FA group and the HC group. The expression of IL-10 in peripheral tDCs was lower in the FA group than that in the HC group. A positive correlation was detected between the serum levels of IL-10 and Gal9. The expression of Gal9 was observed in intestinal biopsies, which was positively correlated with the serum levels of Gal9 as well as serum IL-10 levels. Peripheral Tr1 cells had lower frequencies in the FA group than in the non-FA (Con) group. tDCs demonstrated the ability to generate Tr1 cells, which was weaker in the FA group as compared with the Con group. Exposure of FA tDCs to Gal9 in culture restored the ability to generate Tr1 cells. In summary, the lower frequency of tDC and Tr1 cell of FA patients was associated with the levels of Gal9. The presence of Gal9 restored the capacity of tDC to generate Tr1 cells.
Assuntos
Hipersensibilidade Alimentar , Galectinas , Interleucina-10 , Animais , Camundongos , Células Dendríticas , Galectinas/metabolismo , Tolerância Imunológica , NF-kappa B/metabolismo , Linfócitos T ReguladoresRESUMO
This study aims to characterize the impaired immune regulatory function of Mφ obtained from UC patient colon lavage fluid (CLF). Mφs were the largest proportion (21.3 4.0%) of the CLF-derived cellular components. Less abundant and weaker immune suppressive function were observed in M2 Mφs (M2 cells) of the ulcerative colitis (UC) group. High levels of endoplasmic reticulum (ER) stress associated molecules were detected in UC M2 cells. The spliced X box binding protein-1 (XBP1) gene was negatively correlated with programmed death ligand-1 (PD-L1) in UC M2 cells. XBP1 promoted the expression of ring-finger protein 20 (Rnf20) in M2 cells. Rnf20 reduced PD-L1 abundance in UC M2 cells and impaired the immune suppressive ability. Inhibition of Rnf20 restored the immune regulating capacity of M2 cells and suppressed experimental colitis.
RESUMO
It is well known that the T Helper (Th)2 bias plays a critical role in allergic asthma. Whereas the Th2 bias is maintained in the local tissues is uncertain. IL-33 is vital for the development of the Th2 polarization. TWIST-1 has an effect on regulating cellular functions. The aberrant activation of RAS sustains certain cellular activities. The aim of this study is to study the role of the interaction between activation of TWIST1 and RAS in inducing and maintaining Th2 polarization in allergic asthma. The epithelial cells of the airways (AEC) were isolated from the broncho-alveolar lavage fluids in patients with asthma. The mediators involved in the over-expression of IL-33 were determined by RNA sequencing. A mouse model was established to test the role of TWIST1 and RAS in developing allergic asthma. We observed a strong expression of TWIST1 in patients with allergic asthma that showed a positive correlation with asthmatic responses. TWIST1 favored the expression of the IL-33 in the AEC. Twist1-deficient AEC-carrying mice did not induce Th2 polarization in the airways. The expression TWIST1 in AECs was positively associated with RAS activation in AECs in patients with allergic asthma. The interaction between RAS and TWIST1 in AECs sustained airway allergic inflammation. Inhibition of TWIST1 or RAS prevented asthma-like inflammation in the mouse airways. In summary, the interaction between TWIST1 and RAS induces and maintains IL-33 expression in AECs to facilitate allergic inflammation in the respiratory tract. Inhibition of TWIST1 or RAS can prevent experimental allergic asthma.
Assuntos
Asma , Interleucina-33 , Animais , Camundongos , Asma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Interleucina-33/farmacologia , Células Th2/metabolismoRESUMO
Introduction: To investigate the inhibitory effect of quercetin (QUE) on dendritic cells (DCs) through the toll-like receptor 4/interleukin-1 receptor-associated kinase 4/nuclear factor kappa-B (TLR4/IRAK4/NF-κB) signalling pathway. Material and methods: CCK-8 and apoptosis assays were performed to determine the optimal concentration and action time of QUE to inhibit DCs. Protein extracts from treated DCs were used for Western blotting experiments to determine the relative expression levels of TLR4, IRAK4, and NF-κB p65 proteins. Changes in the ratio of CD86 and CD11c positive cells on the DCs surface were detected using flow cytometry. The molecular docking technique was used to analyse the binding site and free energy of QUE and IRAK4. Results: CCK-8 and apoptosis assays suggested that QUE inhibited the activity and function of DCs in a time-dose-dependent manner. The results of Western blotting suggested that the relative expression levels of TLR4, IRAK4, and NF-κB p65 proteins were increased in the lipopolysaccharide (LPS) group compared with the normal control group, and the relative expression of the above proteins was decreased after treatment with QUE and IRAK4-IN-4. The results of flow cytometry suggested that LPS increased the expression of CD86 and CD11c on the surface of DCs, and QUE and IRAK4-IN-4 decreased the expression of CD86 and CD11c induced by LPS. Molecular docking results showed that the binding sites of QUE and IRAK4 were stable, with the minimum binding energies comparable to that of IRAK4-IN-4. Conclusions: Quercetin may inhibit the activity and function of DCs through the TLR4/IRAK4/NF-κB signalling pathway, and IRAK4 may be its target.
RESUMO
Background: The therapeutic efficacy of allergen specific immunotherapy (SIT) is recognized, but needs improved. Psychological stress influences the immune system's function. The objective of this study is to elucidate the effects of psychological stress on compromising the effectiveness of SIT. Methods: A murine model with the airway allergic disorder (AAD) was established. Mice were treated with SIT with or without restraint stress (Rs). Results: Rs was found to significantly hamper the efficacy of SIT in mice with AAD. Induction of IL-10+ dendritic cells and type 1 regulatory T cells were reduced by Rs in the airway tissues. Rs-induced cortisol release subverted immune tolerance generation. Expression of MARCH1 was elevated in dendritic cells of the allergic lesion sites. The Rs-induced MARCH1 mediated the immune impairment in AAD mice. Genetic ablation of MARCH1 in dendritic cells efficiently blocked the Rs-compromised the therapeutic efficacy of SIT. Conclusion: Rs can increase the expression of MARCH1 in DCs of the allergic lesion sites. MARCH1 interferes with the immune regulatory properties in DCs, and impairs the immune regulatory capacity. Blocking MARCH1 can counteract the Rs-affected SIT efficacy.
Assuntos
Dessensibilização Imunológica , Hipersensibilidade , Camundongos , Animais , Esteroides , Estresse Psicológico/terapia , Hipersensibilidade/terapia , Transdução de Sinais , Ubiquitina-Proteína LigasesRESUMO
Allergic diseases are important diseases that affect many patients worldwide. Over the past few decades, the incidence of allergic diseases has increased significantly due to social development and increased environmental degradation, which has placed a huge economic burden on public health and even led to an increase in mortality. Substantial progress has been made in the understanding of the mechanisms of allergic diseases, and past studies have shown that the occurrence and development of allergic diseases are closely related to changes in the state of the immune system. With the study and in-depth understanding of innate immune lymphocytes, researchers have gradually discovered that dendritic cells (DC) play an important role in many allergic diseases. DC are the body's main antigen-presenting cells, which ingest, process, and hand allergens, and then secrete chemokines such as chemokine ligands 17(CCL17), CCL22, and upregulate their own surface co-stimulating molecules. Then DC present the antigen peptide to the initial T cells and further differentiate them into helper T cells 2(Th2). As an important part of humoral immunity, Th2 participates in the regulation of type 2 immune response through the secretion of cytokines such as interleukin 4(IL-4), IL-5, and IL-13 and plays a leading role. However, our current research on DC is limited and its status in allergic diseases is unclear.Among them, allergic rhinitis, allergic asthma, atopic dermatitis, and food allergy are DC-mediated Th2 immune-related factor disorder-related allergic diseases, and some progress has been made in recent years in the study of the pathogenesis of these diseases. This paper outlines the common phenotypes and activation pathways of DC in different allergic diseases as well as potential research directions to improve the understanding of its immunomodulatory role in different allergic diseases and ultimately find new ways to treat these diseases.
Assuntos
Asma , Dermatite Atópica , Rinite Alérgica , Humanos , Citocinas , Células DendríticasRESUMO
Allergic rhinitis (AR) impairs the quality of life of patients and reduces the efficiency of social work, it is an increasingly serious public medical and economic problem in the world. Conventional anti-allergic drugs for the treatment of allergic rhinitis (AR) can cause certain side effects, which limit the quality of life of patients. Therefore, it makes sense to look for other forms of treatment. Several studies in recent years have shown that probiotics have shown anti-allergic effects in various mouse and human studies. For example, the application of certain probiotic strains can effectively relieve the typical nasal and ocular symptoms of allergic rhinitis in children and adults, thereby improving the quality of life and work efficiency. At the same time, previous studies in humans and mice have found that probiotics can produce multiple effects, such as reduction of Th2 cell inflammatory factors and/or increase of Th1 cell inflammatory factors, changes in allergy-related immunoglobulins and cell migration, regulate Th1/Th2 balance or restore intestinal microbiota disturbance. For patients with limited activity or allergic rhinitis with more attacks and longer attack duration, oral probiotics have positive effects. The efficacy of probiotics in the prevention and treatment of allergic rhinitis is remarkable, but its specific mechanism needs further study. This review summarizes the research progress of probiotics in the treatment of allergic rhinitis in recent years.
RESUMO
Rationale: Th2 polarization plays a central role in the pathogenesis of allergic diseases such as airway allergy. The underlying mechanism is not fully understood yet. X-box-binding protein-1 (XBP1) can regulate immune cell activities upon exposing stressful events. The role of XBP1 in the development of Th2 polarization has not yet been explored. Methods: Mice carrying Xbp1-deficient CD4+ T cells were employed to observe the role of XBP1 in the induction of airway allergy. A cell culture model was established to evaluate the role of XBP1 in facilitating the Th2 lineage commitment. Results: We found that Xbp1 ablation in CD4+ T cells prevented induction of Th2 polarization in the mouse airway tract. XBP1 was indispensable in the Th2 lineage commitment. XBP1 mediated the effects of 3-methyl-4-nitrophenol (MNP) on facilitating inducing antigen-specific Th2 response in the airways. Exposure to MNP induced expression of XBP1 in CD4+ T cells. RhoA facilitated the binding between XBP1 and GATA3 in CD4+ T cells. XBP1 induced GATA3 phosphorylation to promote the Il4 gene transcription. Modulation of the RhoA/XBP1 axis mitigated experimental allergic response in the mouse airways. Conclusions: A potential therapeutic target, XBP1, was identified in this study. XBP1 was required in the development of skewed Th2 response in the airways. Inhibiting XBP1 alleviated Th2 polarization-related immune inflammation in the airways. The data suggest that inhibiting XBP1 has the translation potential for the treatment of airway allergy.
Assuntos
Hipersensibilidade , Células Th2 , Animais , Inflamação/metabolismo , CamundongosRESUMO
The dysfunction of regulating T lymphocytes (Treg) is associated with the pathogenesis of many diseases. 5-hydroxytryptamine (5-HT) is capable of interacting with immune cells. The objective of the present study is to shed light on the role of 5-HT in regulating Treg activities. Blood samples were collected from patients with perennial allergic rhinitis (AR). Tregs were isolated from blood samples by magnetic cell sorting. The levels of 5-HT and other cytokines were determined by enzyme-linked immunosorbent assay. The results showed that serum 5-HT levels in patients with AR were higher than in healthy control (HC) subjects. A positive correlation was identified in the data between 5-HT concentrations and AR-related cytokine concentrations in the serum. A negative correlation was found between serum levels of 5-HT and the peripheral frequency of Treg. Exposure to 5-HT enhanced the expression of IL-6 and IL-21 in dendritic cells (DC). Co-culture of 5-HT-primed DCs with Tregs led to the conversion of Th17 cells. STAT3 blockade efficiently abolished the 5-HT-associated conversion of Th17 cells from Tregs. In summary, patients with AR exhibited higher serum concentrations of 5-HT. 5-HT-primed DCs could convert Tregs to Th17 cells.
Assuntos
Rinite Alérgica , Serotonina , Citocinas , Humanos , Interleucina-6 , Linfócitos T Reguladores , Células Th17RESUMO
BACKGROUND: Corticosteroid resistance (CR) is a serious disadvantage in treating many chronic inflammatory conditions. Eosinophils are the main inflammation cells in allergic reactions. Environmental pollution, such as PM2.5, is associated with the pathogenesis of allergic disorders. The objective of this study is to elucidate the mechanism by which the exposure to PM2.5 confers eosinophil CR status. METHODS: Patients with allergic rhinitis were recruited and assigned to corticosteroid sensitive (CS) and CR groups. Eosinophils were purified from nasal lavage fluids collected from patients with allergic rhinitis. A murine AR mouse model was developed with dust mite allergens and PM2.5 as the sensitization reagents. RESULTS: CR status was detected in about 60% eosinophil collected in patients with AR. Upon exposure to eosinophil activators, CS eosinophils released a large quantity of mediators, which was suppressed by the presence of steroids in the culture. CR eosinophils demonstrated resistance to steroidal therapy. RAS activation levels in eosinophils were higher in CR eosinophils than in CS eosinophils. Higher expression of the Son of sevenless-1 (Sos1) was detected in CR eosinophils, which formed a complex with RAS and glucocorticoidreceptor-α in CR eosinophils to prevent the binding between steroids and glucocorticoidreceptor-α. The presence of an Sos1 inhibitor dissociated glucocorticoid receptor-α from RAS/Sos1 complex, that restored the sensitivity to steroids in eosinophils. Administering the Sos1 inhibitor effectively attenuated the experimental allergic rhinitis. CONCLUSIONS: CR status was detected in approximately 1/3 eosinophils sampled from patients with allergic rhinitis. Sos1 was instrumental in the development and perseverance of CR in eosinophils. Sos1 inhibition restored sensitivity to steroids in CR eosinophils, which effectively reduced experimental allergic rhinitis.
Assuntos
Eosinófilos , Rinite Alérgica , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Animais , Eosinófilos/metabolismo , Humanos , Licenciamento , Camundongos , Mucosa Nasal/patologia , Núcleo Familiar , Material Particulado , Rinite Alérgica/tratamento farmacológicoRESUMO
Allergen-specific immunotherapy (SIT) is the mainstay in the treatment of allergic diseases; its therapeutic efficacy is to be improved. Bacterial flagellin (FGN) has immune regulatory functions. This study investigates the role of FGN in promoting immunotherapy efficacy through modulating oxidative stress in regulatory B cells (Bregs). Blood samples were collected from patients with food allergy (FA) and healthy control (HC) subjects. CD19+ CD5+ Bregs were purified from blood samples by flow cytometry cell sorting. A murine FA model was developed with ovalbumin as the specific antigen. The results showed that peripheral Bregs from FA patients showed lower TLR5-related signals and higher apoptotic activities. The peripheral Breg frequency was negatively correlated with serum FGN levels in FA patients. Exposure to a specific antigen in culture induced antigen-specific Breg apoptosis that was counteracted by the presence of FGN. FGN diminished specific antigen-induced oxidative stress in Bregs. The STAT3/MAPKp38/NF-κB signal pathway was involved in the FGN/TLR5 signal-promoted superoxide dismutase expression in Bregs. Administration of FGN promotes the SIT efficacy in suppressing experimental FA. In summary, administration of FGN promotes SIT efficacy on FA, suggesting that the combination of FGN and SIT can be a novel therapy that has the translational potential to be employed in the treatment of allergic diseases.