Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Nat Commun ; 15(1): 8278, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333064

RESUMO

Despite recent advances, severe acute pancreatitis (SAP) remains a lethal inflammation with limited treatment options. Here, we provide compelling evidence of GV-971 (sodium oligomannate), an anti-Alzheimer's medication, as being a protective agent in various male mouse SAP models. Microbiome sequencing, along with intestinal microbiota transplantation and mass cytometry technology, unveil that GV-971 reshapes the gut microbiota, increasing Faecalibacterium populations and modulating both peripheral and intestinal immune systems. A metabolomics analysis of cecal contents from GV-971-treated SAP mice further identifies short-chain fatty acids, including propionate and butyrate, as key metabolites in inhibiting macrophage M1 polarization and subsequent lethal inflammation by blocking the MAPK pathway. These findings suggest GV-971 as a promising therapeutic for SAP by targeting the microbiota metabolic immune axis.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Pancreatite/imunologia , Pancreatite/microbiologia , Pancreatite/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Transplante de Microbiota Fecal , Humanos , Metabolômica
2.
Microorganisms ; 12(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39203436

RESUMO

Salt marshes are highly dynamic and biologically diverse ecosystems that serve as natural habitats for numerous salt-tolerant plants (halophytes). We investigated the bacterial communities associated with the roots and leaves of plants growing in the coastal salt marshes of the Bayfront Beach, located in Mobile, Alabama, United States. We compared external (epiphytic) and internal (endophytic) communities of both leaf and root plant organs. Using 16S rDNA amplicon sequencing methods, we identified 10 bacterial phyla and 59 different amplicon sequence variants (ASVs) at the genus level. Bacterial strains belonging to the phyla Proteobacteria, Bacteroidetes, and Firmicutes were highly abundant in both leaf and root samples. At the genus level, sequences of the genus Pseudomonas were common across all four sample types, with the highest abundance found in the leaf endophytic community. Additionally, Pantoea was found to be dominant in leaf tissue compared to roots. Our study revealed that plant habitat (internal vs. external for leaves and roots) was a determinant of the bacterial community structure. Co-occurrence network analyses enabled us to discern the intricate characteristics of bacterial taxa. Our network analysis revealed varied levels of ASV complexity in the epiphytic networks of roots and leaves compared to the endophytic networks. Overall, this study advances our understanding of the intricate composition of the bacterial microbiota in habitats (epiphytic and endophytic) and organs (leaf and root) of coastal salt marsh plants and suggests that plants might recruit habitat- and organ-specific bacteria to enhance their tolerance to salt stress.

3.
Trends Plant Sci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39138088

RESUMO

Climate change threatens global agriculture, impacting plant health and crop yield, while plant microbiomes offer potential solutions to enhance resilience. In this forum, we discuss the prospects of single cell multiome and network science in understanding intricate plant-microbe interactions, providing insights for sustainable agriculture and improved crop productivity for global food security.

4.
Cell Death Dis ; 15(8): 556, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090114

RESUMO

Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.


Assuntos
Morte Celular , Neoplasias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Oxirredução , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Transdução de Sinais , Apoptose , Ferroptose/efeitos dos fármacos
5.
Cell Death Discov ; 10(1): 329, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030174

RESUMO

Hyperbilirubinaemia is a prevalent condition during the neonatal period, and if not promptly and effectively managed, it can lead to severe bilirubin-induced neurotoxicity. Sunflower seeds are a nutrient-rich food source, particularly abundant in linoleic acid. Here, we provide compelling evidence that lactating maternal mice fed a sunflower seed diet experience enhanced neurological outcomes and increased survival rates in hyperbilirubinemic offspring. We assessed histomorphological indices, including cerebellar Nissl staining, and Calbindin staining, and hippocampal hematoxylin and eosin staining. Furthermore, we observed the transmission of linoleic acid, enriched in sunflower seeds, to offspring through lactation. The oral administration of linoleic acid-rich sunflower seed oil by lactating mothers significantly prolonged the survival time of hyperbilirubinemic offspring mice. Mechanistically, linoleic acid counteracts the bilirubin-induced accumulation of ubiquitinated proteins and neuronal cell death by activating autophagy. Collectively, these findings elucidate the novel role of a maternal linoleic acid-supplemented diet in promoting child health.

6.
Redox Biol ; 75: 103259, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38955112

RESUMO

Ferroptosis is a form of iron-related oxidative cell death governed by an integrated redox system, encompassing pro-oxidative proteins and antioxidative proteins. These proteins undergo precise control through diverse post-translational modifications, including ubiquitination, phosphorylation, acetylation, O-GlcNAcylation, SUMOylation, methylation, N-myristoylation, palmitoylation, and oxidative modification. These modifications play pivotal roles in regulating protein stability, activity, localization, and interactions, ultimately influencing both the buildup of iron and lipid peroxidation. In mammalian cells, regulators of ferroptosis typically undergo degradation via two principal pathways: the ubiquitin-proteasome system, which handles the majority of protein degradation, and autophagy, primarily targeting long-lived or aggregated proteins. This comprehensive review aims to summarize recent advances in the post-translational modification and degradation of proteins linked to ferroptosis. It also discusses strategies for modulating ferroptosis through protein modification and degradation systems, providing new insights into potential therapeutic applications for both cancer and non-neoplastic diseases.


Assuntos
Ferroptose , Processamento de Proteína Pós-Traducional , Proteólise , Humanos , Animais , Ferro/metabolismo , Oxirredução , Peroxidação de Lipídeos , Neoplasias/metabolismo , Neoplasias/patologia , Ubiquitinação , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
Circ Res ; 135(3): e39-e56, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38873758

RESUMO

BACKGROUND: Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. Apart from Parkin, little is known about additional Ub (ubiquitin) ligases that mediate mitochondrial ubiquitination and turnover, particularly in highly metabolically active organs such as the heart. METHODS: In this study, we have combined in silico analysis and biochemical assay to identify CRL (cullin-RING ligase) 5 as a mitochondrial Ub ligase. We generated cardiomyocytes and mice lacking RBX2 (RING-box protein 2; also known as SAG [sensitive to apoptosis gene]), a catalytic subunit of CRL5, to understand the effects of RBX2 depletion on mitochondrial ubiquitination, mitophagy, and cardiac function. We also performed proteomics analysis and RNA-sequencing analysis to define the impact of loss of RBX2 on the proteome and transcriptome. RESULTS: RBX2 and CUL (cullin) 5, 2 core components of CRL5, localize to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, increased cardiomyocyte cell death, and has a global impact on the mitochondrial proteome. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to the rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. The action of RBX2 in mitochondria is not dependent on Parkin, and Parkin gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 (PTEN-induced kinase 1) in mitochondria. CONCLUSIONS: These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that regulates mitophagy and cardiac homeostasis in a Parkin-independent, PINK1-dependent manner.


Assuntos
Camundongos Knockout , Mitocôndrias Cardíacas , Mitofagia , Miócitos Cardíacos , Ubiquitinação , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
Am J Cardiovasc Dis ; 14(2): 90-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764549

RESUMO

OBJECTIVE: Proteasome activation by the cAMP-dependent protein kinase (PKA) was long suggested and recent studies using both cell cultures and genetically engineered mice have established that direct phosphorylation of RPN6/PSMD11 at Serine14 (pS14-RPN6) mediates the activation of 26S proteasomes by PKA. Genetic mimicry of pS14-RPN6 has been shown to be benign at baseline and capable of protecting against cardiac proteinopathy in mice. Here we report the results from a comprehensive baseline characterization of the Rpn6S14A mice (S14A), the first animal model of genetic blockade of the activation of 26S proteasomes by PKA. METHOD: Wild type and homozygous S14A littermate mice were subjected to serial M-mode echocardiography at 1 through 7 months of age, to left ventricular (LV) catheterization via the carotid artery for assessment of LV mechanical performance, and to cardiac gravimetric analyses at 26 weeks of age. Mouse mortality and morbidity were monitored daily for up to one year. Males and females were studied in parallel. RESULTS: Mice homozygous for S14A were viable and fertile and did not show discernible developmental abnormalities or increased mortality or morbidity compared with their Rpn6 wild type littermates by at least one year of age, the longest cohort observed thus far. Neither serial echocardiography nor hemodynamic assessments detected a remarkable difference in cardiac morphometry and function between S14A and wild type littermate mice. No cardiac gravimetric difference was observed. CONCLUSION: The findings of the present study indicate that genetic blockade of the activation of 26S proteasomes by PKA is well tolerated by mice at baseline. Therefore, the S14A mouse provides a desirable genetic tool for further investigating the in vivo pathophysiological and pharmacological significance of pS14-RPN6.

9.
Autophagy ; 20(6): 1213-1246, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38442890

RESUMO

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.


Assuntos
Autofagia , Ferroptose , Ferroptose/fisiologia , Humanos , Autofagia/fisiologia , Animais , Consenso
10.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464205

RESUMO

Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.

11.
Aging (Albany NY) ; 16(5): 4736-4758, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38461424

RESUMO

Ovarian cancer stands as a prevalent malignancy within the realm of gynecology, and the emergence of resistance to chemotherapeutic agents remains a pivotal impediment to both prognosis and treatment. Through a single-cell level investigation, we scrutinize the drug resistance and mitotic activity of the core tumor cells in ovarian cancer. Our study revisits the interrelationships and temporal trajectories of distinct epithelial cells (EPCs) subpopulations, while identifying genes associated with ovarian cancer prognosis. Notably, our findings establish a strong association between the drug resistance of EPCs and oxidative phosphorylation pathways. Subsequently, through subpopulation and temporal trajectory analysis, we confirm the intermediate position of EPCs subpopulation C0. Furthermore, we delve into the immunological functions and differentially expressed genes associated with the prognosis of C0, shedding light on the potential for constructing novel ovarian cancer prognosis models and identifying new therapeutic targets.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Células Epiteliais/metabolismo , Análise de Sequência de RNA
12.
Nat Cell Biol ; 26(9): 1447-1457, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38424270

RESUMO

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Ferroptose/genética , Humanos , Animais , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo
13.
Acta Pharm Sin B ; 13(10): 4217-4233, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799381

RESUMO

Increasing evidences suggest the important role of calcium homeostasis in hallmarks of cancer, but its function and regulatory network in metastasis remain unclear. A comprehensive investigation of key regulators in cancer metastasis is urgently needed. Transcriptome sequencing (RNA-seq) of primary esophageal squamous cell carcinoma (ESCC) and matched metastatic tissues and a series of gain/loss-of-function experiments identified potassium channel tetramerization domain containing 4 (KCTD4) as a driver of cancer metastasis. KCTD4 expression was found upregulated in metastatic ESCC. High KCTD4 expression is associated with poor prognosis in patients with ESCC and contributes to cancer metastasis in vitro and in vivo. Mechanistically, KCTD4 binds to CLIC1 and disrupts its dimerization, thus increasing intracellular Ca2+ level to enhance NFATc1-dependent fibronectin transcription. KCTD4-induced fibronectin secretion activates fibroblasts in a paracrine manner, which in turn promotes cancer cell invasion via MMP24 signaling as positive feedback. Furthermore, a lead compound K279-0738 significantly suppresses cancer metastasis by targeting the KCTD4‒CLIC1 interaction, providing a potential therapeutic strategy. Taken together, our study not only uncovers KCTD4 as a regulator of calcium homeostasis, but also reveals KCTD4/CLIC1-Ca2+-NFATc1-fibronectin signaling as a novel mechanism of cancer metastasis. These findings validate KCTD4 as a potential prognostic biomarker and therapeutic target for ESCC.

14.
Acta Pharmacol Sin ; 44(12): 2537-2548, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528233

RESUMO

5-Fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC) patients, but the development of acquired resistance to 5-FU remains a big challenge. Deubiquitinases play a key role in the protein degradation pathway, which is involved in cancer development and chemotherapy resistance. In this study, we investigated the effects of targeted inhibition of the proteasomal deubiquitinases USP14 and UCHL5 on the development of CRC and resistance to 5-FU. By analyzing GEO datasets, we found that the mRNA expression levels of USP14 and UCHL5 in CRC tissues were significantly increased, and negatively correlated with the survival of CRC patients. Knockdown of both USP14 and UCHL5 led to increased 5-FU sensitivity in 5-FU-resistant CRC cell lines (RKO-R and HCT-15R), whereas overexpression of USP14 and UCHL5 in 5-FU-sensitive CRC cells decreased 5-FU sensitivity. B-AP15, a specific inhibitor of USP14 and UCHL5, (1-5 µM) dose-dependently inhibited the viability of RKO, RKO-R, HCT-15, and HCT-15R cells. Furthermore, treatment with b-AP15 reduced the malignant phenotype of CRC cells including cell proliferation and migration, and induced cell death in both 5-FU-sensitive and 5-FU-resistant CRC cells by impairing proteasome function and increasing reactive oxygen species (ROS) production. In addition, b-AP15 inhibited the activation of NF-κB pathway, suppressing cell proliferation. In 5-FU-sensitive and 5-FU-resistant CRC xenografts nude mice, administration of b-AP15 (8 mg·kg-1·d-1, intraperitoneal injection) effectively suppressed the growth of both types of tumors. These results demonstrate that USP14 and UCHL5 play an important role in the development of CRC and resistance to 5-FU. Targeting USP14 and UCHL5 with b-AP15 may represent a promising therapeutic strategy for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Complexo de Endopeptidases do Proteassoma , Animais , Camundongos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos Nus , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ubiquitina Tiolesterase
16.
Circ Res ; 133(7): 572-587, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641975

RESUMO

BACKGROUND: A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that PKA (cAMP-dependent protein kinase or protein kinase A) activates the 26S proteasome by pS14-Rpn6 (serine14-phosphorylated Rpn6), but this discovery and its physiological significance remain to be established in vivo. METHODS: Male and female mice with Ser14 of Rpn6 (regulatory particle non-ATPase 6) mutated to Ala (S14A [Rpn6/Psmd11S14A]) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system functioning was evaluated with the GFPdgn (green fluorescence protein with carboxyl fusion of the CL1 degron) reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G [arginine120 to glycine missense mutant alpha B-crystallin]). RESULTS: PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type but not S14A embryonic fibroblasts (mouse embryonic fibroblasts), adult cardiomyocytes, and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and adult mouse cardiomyocytes than in wild-type counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with nontransgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than wild-type neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates, and of aberrant CryAB (alpha B-crystallin) protein aggregates, less fetal gene reactivation, and cardiac hypertrophy, and delays in cardiac malfunction. CONCLUSIONS: This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifying a new therapeutic target to reduce cardiac proteotoxicity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Cadeia B de alfa-Cristalina , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Miócitos Cardíacos , Proteínas Quinases Dependentes de AMP Cíclico , Ubiquitinas
17.
Methods Mol Biol ; 2690: 179-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450148

RESUMO

Proteins are the building blocks of life, and a vast array of cellular processes is handled by protein-protein interactions (PPIs). The protein complexes formed via PPIs lead to tangled networks that, with their continuous remodeling, build up systematic functional units. Over the years, PPIs have become an area of interest for many researchers, leading to the development of multiple in vitro and in vivo methods to reveal these interactions. The yeast-two-hybrid (Y2H) system is a potent genetic way to map PPIs in both a micro- and high-throughput manner. Y2H is a technique that involves using modified yeast cells to identify protein-protein interactions. For Y2H, the yeast cells are engineered only to grow when there is a significant interaction between a specific protein with its interacting partner. PPIs are identified in the Y2H system by stimulating reporter genes in response to a restored transcription factor. However, Y2H results may be constrained by stringency requirements, as the limited number of colony screenings through this technique could result in the possible elimination of numerous genuine interactions. Therefore, DEEPN (dynamic enrichment for evaluation of protein networks) can be used, offering the potential to study the multiple static and transient protein interactions in a single Y2H experiment. DEEPN utilizes next-generation DNA sequencing (NGS) data in a high-throughput manner and subsequently applies computational analysis and statistical modeling to identify interacting partners. This protocol describes customized reagents and protocols through which DEEPN analysis can be utilized efficiently and cost-effectively.


Assuntos
Saccharomyces cerevisiae , Fatores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Genes Reporter , Fatores de Transcrição/metabolismo , Mapeamento de Interação de Proteínas/métodos
18.
Trends Plant Sci ; 28(12): 1379-1390, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37453923

RESUMO

Orphan genes (OGs) are protein-coding genes without a significant sequence similarity in closely related species. Despite their functional importance, very little is known about the underlying molecular mechanisms by which OGs participate in diverse biological processes. Here, we discuss the evolutionary mechanisms of OGs' emergence with relevance to species-specific adaptations. We also provide a mechanistic view of the involvement of OGs in multiple processes, including growth, development, reproduction, and carbon-metabolism-mediated immunity. We highlight the interconnection between OGs and the sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs)-target of rapamycin (TOR) signaling axis for phytohormone signaling, nutrient metabolism, and stress responses. Finally, we propose a high-throughput pipeline for OGs' interspecies and intraspecies gene transfer through a transgenic approach for future biotechnological advances.


Assuntos
Plantas , Transdução de Sinais , Plantas/genética , Plantas/metabolismo , Transdução de Sinais/genética , Reguladores de Crescimento de Plantas/metabolismo , Evolução Biológica , Biologia
19.
Cell Discov ; 9(1): 74, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460462

RESUMO

Posttranslational modification dramatically enhances protein complexity, but the function and precise mechanism of novel lysine acylation modifications remain unknown. Chemoresistance remains a daunting challenge to successful treatment. We found that lysine butyrylation (Kbu) is specifically upregulated in chemoresistant tumor cells and tissues. By integrating butyrylome profiling and gain/loss-of-function experiments, lysine 754 in HSP90 (HSP90 K754) was identified as a substrate for Kbu. Kbu modification leads to overexpression of HSP90 in esophageal squamous cell carcinoma (ESCC) and its further increase in relapse samples. Upregulation of HSP90 contributes to 5-FU resistance and can predict poor prognosis in cancer patients. Mechanistically, HSP90 K754 is regulated by the cooperation of KAT8 and HDAC11 as the writer and eraser, respectively; SDCBP increases the Kbu level and stability of HSP90 by binding competitively to HDAC11. Furthermore, SDCBP blockade with the lead compound V020-9974 can target HSP90 K754 to overcome 5-FU resistance, constituting a potential therapeutic strategy.

20.
J Sep Sci ; 46(19): e2300314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37485594

RESUMO

Compound Chinese medicine preparation is a complex multi-component system. The traditional methods such as physicochemical identification and quantification of several main index components cannot provide adequate quality evaluation for Compound Banlangen Granules. The objective of this work was to establish a characteristic degradation fingerprint of Compound Banlangen Granules polysaccharides, and the reference fingerprint was obtained from the model samples prepared using prescription medicinal herbs from different origins. The partial degradation products of Compound Banlangen Granules polysaccharides were profiled by capillary zone electrophoresis, and the quality difference of polysaccharides of these preparations was compared by cluster analysis and principal component analysis. It was found that the contents and the characteristic degradation fingerprints of the polysaccharides from 25 batches of Compound Banlangen Granules of 17 manufacturers were significantly different. The quality of Compound Banlangen Granules polysaccharides was evaluated by the characteristic degradation fingerprint tool with satisfactory results. The present method provides a reference for the quality control strategy development of polysaccharides in other compound Chinese medicine preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA