Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biochem Biophys Res Commun ; 585: 117-123, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34801931

RESUMO

Sheath blight (ShB) is one of the most common diseases in rice that significantly affects yield production. However, the underlying mechanisms of rice defense remain largely unknown. Our previous transcriptome analysis identified that infection with Rhizoctonia solani significantly induced the expression level of SWEET2a, a member of the SWEET sugar transporter. The sweet2a genome-editing mutants were less susceptible to ShB. Further yeast-one hybrid, ChIP, and transient assays demonstrated that WRKY53 binds to the SWEET2a promoter to activate its expression. WRKY53 is a key brassinosteroid (BR) signaling transcription factor. Similar to the BR receptor gene BRI1 and biosynthetic gene D2 mutants, the WRKY53 mutant and overexpressor were less and more susceptible to ShB compared to wild-type, respectively. Inoculation with R. solani induced expression of BRI1, D2, and WRKY53, but inhibited MPK6 (a BR-signaling regulator) activity. Also, MPK6 is known to phosphorylate WRKY53 to enhance its transcription activation activity. Transient assay results indicated that co-expression of MPK6 and WRKY53 enhanced WRKY53 trans-activation activity to SWEET2a. Furthermore, expression of WRKY53 SD (the active phosphorylated forms of WRKY53) but not WRKY53 SA (the inactive phosphorylated forms of WRKY53), enhanced WRKY53-mediated activation of SWEET2a compared to expression of WRKY53 alone. Taken together, our analyses showed that R. solani infection may activate BR signaling to induce SWEET2a expression via WRKY53 through negative regulation of ShB resistance in rice.


Assuntos
Proteínas de Ligação a DNA/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Monossacarídeos/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Western Blotting , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Fosforilação , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizoctonia/fisiologia , Transdução de Sinais
4.
Mol Plant Pathol ; 19(9): 2149-2161, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29660235

RESUMO

Pathogen-host interaction is a complicated process; pathogens mainly infect host plants to acquire nutrients, especially sugars. Rhizoctonia solani, the causative agent of sheath blight disease, is a major pathogen of rice. However, it is not known how this pathogen obtains sugar from rice plants. In this study, we found that the rice sugar transporter OsSWEET11 is involved in the pathogenesis of sheath blight disease. Quantitative real-time polymerase chain reaction (qRT-PCR) and ß-d-glucuronidase expression analyses showed that R. solani infection significantly enhanced OsSWEET11 expression in leaves amongst the clade III SWEET members. The analyses of transgenic plants revealed that Ossweet11 mutants were less susceptible, whereas plants overexpressing OsSWEET11 were more susceptible, to sheath blight compared with wild-type controls, but the yield of OsSWEET11 mutants and overexpressors was reduced. SWEETs become active on oligomerization. Split-ubiquitin yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays showed that mutated OsSWEET11 interacted with normal OsSWEET11. In addition, expression of conserved residue mutated AtSWEET1 inhibited normal AtSWEET1 activity. To analyse whether inhibition of OsSWEET11 function in mesophyll cells is related to defence against this disease, mutated OsSWEET11 was expressed under the control of the Rubisco promoter, which is specific for green tissues. The resistance of transgenic plants to sheath blight disease, but not other disease, was improved, whereas yield production was not obviously affected. Overall, these results suggest that R. solani might acquire sugar from rice leaves by the activation of OsSWEET11 expression. The plants can be protected from infection by manipulation of the expression of OsSWEET11 without affecting the crop yield.


Assuntos
Células do Mesofilo/microbiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Células do Mesofilo/metabolismo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
J Exp Bot ; 68(3): 727-737, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035023

RESUMO

The promotive effects of brassinosteroids (BRs) on plant growth and development have been widely investigated; however, it is not known whether BRs directly affect nutrient uptake. Here, we explored the possibility of a direct relationship between BRs and ammonium uptake via AMT1-type genes in rice (Oryza sativa). BR treatment increased the expression of AMT1;1 and AMT1;2, whereas in the mutant d61-1, which is defective in the BR-receptor gene BRI1, BR-dependent expression of these genes was suppressed. We then employed Related to ABI3/VP1-Like 1 (RAVL1), which is involved in BR homeostasis, to investigate BR-mediated AMT1 expression and its effect on NH4+ uptake in rice roots. AMT1;2 expression was lower in the ravl1 mutant, but higher in the RAVL1-overexpressing lines. EMSA and ChIP analyses showed that RAVL1 activates the expression of AMT1;2 by directly binding to E-box motifs in its promoter. Moreover, 15NH4+ uptake, cellular ammonium contents, and root responses to methyl-ammonium strongly depended on RAVL1 levels. Analysing AMT1;2 expression levels in different crosses between BRI1 and RAVL1 mutant and overexpression lines indicated that RAVL1 acts downstream of BRI1 in the regulation of AMT1;2. Thus, the present study shows how BRs may be involved in the transcriptional regulation of nutrient transporters to modulate their uptake capacity.


Assuntos
Brassinosteroides/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
6.
J Exp Bot ; 67(6): 1883-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826218

RESUMO

Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice.


Assuntos
Brassinosteroides/farmacologia , Ácidos Indolacéticos/metabolismo , Oryza/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Alelos , Fenômenos Biomecânicos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Hidroxilação , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
7.
Curr Protoc Plant Biol ; 1(3): 466-487, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31725960

RESUMO

Rice (Oryza sativa) is the most important consumed staple food for a large and diverse population worldwide. Since databases of genomic sequences became available, functional genomics and genetic manipulations have been widely practiced in rice research communities. Insertional mutants are the most common genetic materials utilized to analyze gene function. To mutagenize rice genomes, we exploited the transpositional activity of an Activator/Dissociation (Ac/Ds) system in rice. To mobilize Ds in rice genomes, a maize Ac cDNA was expressed under the CaMV35S promoter, and a gene trap Ds was utilized to detect expression of host genes via the reporter gene GUS. Conventional transposon-mediated gene-tagging systems rely on genetic crossing and selection markers. Furthermore, the activities of transposases have to be monitored. By taking advantage of the fact that Ds becomes highly active during tissue culture, a plant regeneration system employing tissue culture was employed to generate a large Ds transposant population in rice. This system overcomes the requirement for markers and the monitoring of Ac activity. In the regenerated populations, more than 70% of the plant lines contained independent Ds insertions and 12% expressed GUS at seedling stages. This protocol describes the method for producing a Ds-mediated insertional population via tissue culture regeneration systems. © 2016 by John Wiley & Sons, Inc.

8.
Ying Yong Sheng Tai Xue Bao ; 26(10): 3111-8, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26995920

RESUMO

In order to improve root parameterization in land surface model, the sub-model for root in CERES-Maize was coupled in the SSiB2 after calibrating of maize parameters in SSiB2. The effects of two improved root parameterization schemes on simulated results of land surface flux were analyzed. Results indicated that simulation accuracy of land surface flux was enhanced when the root module provided root depth only with the SSiB2 model (scheme I). Correlation coefficients between observed and simulated values of latent flux and sensible flux increased during the whole growing season, and RMSE of linear fitting decreased. Simulation accuracy of CO2 flux was also enhanced from 121 days after sowing to mature period. On the other hand, simulation accuracy of the flux was enhanced when the root module provided root depth and root length density simultaneously for the SSiB2 model (scheme II). Compared with the scheme I, the scheme II was more comprehensive, while its simulation accuracy of land surface flux decreased. The improved root parameterization in the SSiB2 model was better than the original one, which made simulated accuracy of land-atmospheric flux improved. The scheme II overestimated root relative growth in the surface layer soil, so its simulated accuracy was lower than that of the scheme I.


Assuntos
Modelos Teóricos , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Estações do Ano , Solo
9.
New Phytol ; 197(3): 791-804, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23278238

RESUMO

Indeterminate domain (IDD) genes are a family of plant transcriptional regulators that function in the control of development and metabolism during growth. Here, the function of Oryza sativa indeterminate domain 10 (OsIDD10) has been explored in rice plants. Compared with wild-type roots, idd10 mutant roots are hypersensitive to exogenous ammonium. This work aims to define the action of IDD10 on gene expression involved in ammonium uptake and nitrogen (N) metabolism. The ammonium induction of key ammonium uptake and assimilation genes was examined in the roots of idd10 mutants and IDD10 overexpressors. Molecular studies and transcriptome analysis were performed to identify target genes and IDD10 binding cis-elements. IDD10 activates the transcription of AMT1;2 and GDH2 by binding to a cis-element motif present in the promoter region of AMT1;2 and in the fifth intron of GDH2. IDD10 contributes significantly to the induction of several genes involved in N-linked metabolic and cellular responses, including genes encoding glutamine synthetase 2, nitrite reductases and trehalose-6-phosphate synthase. Furthermore, the possibility that IDD10 might influence the N-mediated feedback regulation of target genes was examined. This study demonstrates that IDD10 is involved in regulatory circuits that determine N-mediated gene expression in plant roots.


Assuntos
Oryza/genética , Proteínas de Plantas/fisiologia , Compostos de Amônio Quaternário/farmacologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamina/farmacologia , Metionina Sulfoximina/farmacologia , Dados de Sequência Molecular , Mutagênese Insercional , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA