Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Ethnopharmacol ; 337(Pt 2): 118893, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39362322

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis is a critical pathological process in the progression of chronic liver injury, ultimately resulting in cirrhosis, for which currently available therapeutic interventions remain inadequate. Among these, the Qianggan Ruanjian Pill (QGRJP) has emerged as a clinically experienced formula with notable therapeutic efficacy against liver fibrosis. However, the precise underlying mechanisms require further investigation. AIM OF THE STUDY: In this study, we investigated the key pathways and target genes of QGRJP that attenuate liver fibrosis and elucidated the underlying mechanisms. MATERIALS AND METHODS: High-performance liquid chromatography-mass spectrometry (HPLC-MS) was used to identify the major components of the QGRJP. Mouse models of liver fibrosis were established by injecting olive oil containing 25% carbon tetrachloride (CCl4), which was administered at different doses of QGRJP by gavage. Liver damage and function were assessed using serum biochemical detection, ultrasound imaging, and histopathological examination. The anti-fibrosis effect was assessed using immunohistochemistry, western blotting, and quantitative real-time PCR (qRT-PCR). The in vivo safety of the QGRJP was evaluated using weight monitoring and biopsy. Potential anti-liver fibrosis signalling pathways and key targets of QGRJP were identified using RNA-seq analysis and network pharmacology. The predicted targets and pathways were validated using in vitro and in vivo experiments. RESULTS: QGRJP significantly ameliorated CCl4-induced liver fibrosis, and its mechanism was correlated with the inhibition of hepatic stellate cell (HSC) activation and the inflammatory response via inhibition of the TGF-ß1/Smad and PI3K/AKT pathways, leading to a significant reduction in the expression of collagen and other fibrosis-related proteins. Additionally, no obvious toxic side effects were observed in the major organs of the mice or in activated HSCs (aHSCs). CONCLUSION: This study demonstrated that QGRJP mitigated liver injury, inflammation, and fibrosis by inhibiting the TGF-ß1/Smad and PI3K/AKT signalling pathways.

2.
Foods ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335822

RESUMO

Corn husk, a by-product of corn starch production and processing, contains high-quality dietary fiber (DF). Our study compares and analyzes the impact of Hericium erinaceus solid-state fermentation (SSF) on the structure and physicochemical characteristics of soluble dietary fiber (SDF) of corn husks. The study also investigates the kinetics of SSF of H. erinaceus in this process. The scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) results revealed significant structural changes in corn husk SDF before and after fermentation, with a significant elevation in the functional group numbers. The data indicate that the fermented corn husk SDF's water-holding, swelling, and oil-holding capacities increased to 1.57, 1.95, and 1.80 times those of the pre-fermentation SDF, respectively. Additionally, the results suggest that changes in extracellular enzyme activity and nutrient composition during SSF of H. erinaceus are closely associated with the mycelium growth stage, with a mutual promotion or inhibition relationship between the two. Our study offers a foundation for corn husk SDF fermentation and is relevant to the bioconversion of maize processing by-products.

3.
Food Chem X ; 23: 101656, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39113738

RESUMO

Corn gluten meal-corn husk mixes (CCM) are an inexpensive and readily available agricultural by-product. This study explores a novel technique by converting CCM into high-value livestock feed protein sources through fermentation with Aspergillus niger AAX and Lactobacillus fermentum LLS, aiming to sustainably meet future global protein needs. The process of fermentation significantly altered the structural composition of high molecular weight proteins, zein, and dietary fibers. This transformation resulted in a marked elevation in the concentrations of peptides, free amino acids, and polyphenols. The acidic environment produced during fermentation prevented lipid oxidation in CCM, thereby extending its storability. After fermentation, the content of anti-nutritional factors decreased, while its antioxidant capacity increased. In vitro simulated digestion suggested that fermentation improved the digestibility of CCM protein. In vivo animal experiments showed that fermented CCM (FCCM) promoted growth and gut health in chicks. This study provides new insights into the utilization of CCM.

4.
Int J Biol Macromol ; 279(Pt 2): 135215, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216577

RESUMO

High hydrostatic pressure (HHP) was used to synthesize corn starch (CS) and ferulic acid (FA) complex (CS-FA). Its effects on the structure of the complex at multiple scales and its digestibility were examined. The results demonstrated that HHP significantly influenced the digestibility of the CS-FA complex, decreasing the content of rapidly digestible starch (RDS) while increasing slowly digestible starch (SDS) and resistant starch (RS). Notably, the combined SDS and RS content in the HHP-treated CS-FA complex with 2.0 % FA addition (38.13 %) was significantly higher (p < 0.05) than those in the CS-FA complex without HHP treatment (29.21 %) and pure CS (21.72 %). The results indicated that HHP treatment reduced the enthalpy change (ΔH), number of short-range order structures, and relative crystallinity (RC) while increasing the average particle size of these CS-FA complexes. This treatment also increased the proportion of amorphous starch regions and the degree of agglomeration between the starch and FA. HHP treatment-induced CS-FA complexes exhibited a denser fractal structure and higher short-range order, affecting the interaction sites between the starch and digestive enzymes. These findings suggest the potential application of HHP treatment and FA in modulating the postprandial glycemic response to starchy food.

5.
Int J Biol Macromol ; 275(Pt 2): 133682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084976

RESUMO

This study aimed to investigate the impact of alginate (AG) on the retrogradation properties of corn starch (CS) in conjunction with three phenolic compounds, including naringin (NA), rutin (RT), and soy isoflavones (SI). The findings indicated that AG, NA, RT, and SI collectively resulted in a significant reduction in the hardness, retrogradation enthalpy, and relaxation time of CS gel. This effect was more pronounced when compared to NA, RT, and SI individually. The findings suggested that the elemental system comprising AG, phenolic compounds, and CS yielded enhanced water retention capacity and thermal stability. Moreover, a noticeable decrease in the short-range ordered structure and crystallinity was observed, indicating that AG and phenolic compounds effectively inhibited the retrogradation of CS; notably, the synergistic interaction between AG and SI resulted in the most favorable outcome. The results of this study provide new ideas for the design, development, and quality improvement of starch-based food.


Assuntos
Alginatos , Polifenóis , Amido , Zea mays , Amido/química , Alginatos/química , Alginatos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Zea mays/química , Água/química
6.
J Environ Manage ; 366: 121684, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981273

RESUMO

Addressing the challenge of sustainable agricultural processing waste management is crucial. Protein sources are essential for livestock farming, and one viable solution is the microbial fermentation of agricultural by-products. In this study, the microorganisms utilized for fermentation were Pichia fermentans PFZS and Limmosilactobacillus fermentum LFZS. The results demonstrated that the fermented corn gluten meal-bran mixture (FCBM) effectively degraded high molecular weight proteins, resulting in increases of approximately 23.3%, 367.6%, and 159.3% in crude protein (CP), trichloroacetic acid-soluble protein (TCA-SP), and free amino acid (FAA), respectively. Additionally, there was a significant enhancement in the content of beneficial metabolites, including total phenols, carotenoids, and microorganisms. FCBM also effectively reduced anti-nutritional factors while boosting antioxidant and anti-inflammatory substances, such as dipeptides and tripeptides. The fermentation process was marked by an increase in beneficial endophytes, which was closely correlated with the enhancement of beneficial metabolites. Overall, FCBM provides a theoretical basis for substituting traditional protein resources in animal husbandry.


Assuntos
Fermentação , Glutens , Zea mays , Zea mays/metabolismo , Glutens/metabolismo , Gerenciamento de Resíduos/métodos
7.
Sci Rep ; 14(1): 16973, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043769

RESUMO

Our previous research found that fecal microbiota transplantation (FMT) and inulin synergistically affected the intestinal barrier and immune system function in chicks. However, does it promote the early immunity of the poultry gut-associated lymphoid tissue (GALT)? How does it regulate the immunity? We evaluated immune-related indicators in the serum, cecal tonsil, and intestine to determine whether FMT synergistic inulin had a stronger impact on gut health and which gene expression regulation was affected. The results showed that FMT synergistic inulin increased TGF-ß secretion and intestinal goblet cell number and MUC2 expression on day 14. Expression of BAFFR, PAX5, CXCL12, and IL-2 on day 7 and expression of CXCR4 and IL-2 on day 14 in the cecal tonsils significantly increased. The transcriptome indicated that CD28 and CTLA4 were important regulatory factors in intestinal immunity. Correlation analysis showed that differential genes were related to the immunity and development of the gut and cecal tonsil. FMT synergistic inulin promoted the development of GALT, which improved the early-stage immunity of the intestine by regulating CD28 and CTLA4. This provided new measures for replacing antibiotic use and reducing the use of therapeutic drugs while laying a technical foundation for achieving anti-antibiotic production of poultry products.


Assuntos
Galinhas , Transplante de Microbiota Fecal , Inulina , Animais , Inulina/farmacologia , Galinhas/microbiologia , Galinhas/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Ceco/microbiologia
9.
Food Res Int ; 189: 114571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876583

RESUMO

The non-covalent and covalent complexes of ultrasound treated soybean protein isolate (SPI) and soybean isoflavone (SI) were prepared, and the structure, physicochemical properties and in vitro digestion characteristics of SPI-SI complexes were investigated. Ultrasonic treatment increased the non-covalent and covalent binding degree of SPI with SI, and the 240 W ultrasonic covalent complexes had higher binding efficiency. Appropriate ultrasonic treatment caused more uniform particle size distribution, lower average particle size and higher surface charge, which enhanced the free sulfhydryl groups and surface hydrophobicity, thus improving the stability, solubility and emulsifying properties of complexes. Ultrasonic treatment resulted in more disordered secondary structure, tighter tertiary conformation, higher thermal stability and stronger SPI-SI covalent interactions of complexes. These structural modifications of particles had important effects on the chemical stability and gastrointestinal digestion fate of SI. The ultrasonic covalent complexation had a greater resistance to heat-induced chemical degradation of SI and improved its chemical stability. Furthermore, the 240 W ultrasonic covalent complexes showed lower protein digestibility during digestion, and provided stronger protection for SI, which improved the digestion stability and antioxidant activity. Therefore, appropriate ultrasound promoted SPI-SI interactions to improve the stability and functional properties of complexes, which provided a theoretical basis for the development of new complexes and their applications in functional foods.


Assuntos
Digestão , Interações Hidrofóbicas e Hidrofílicas , Isoflavonas , Tamanho da Partícula , Solubilidade , Proteínas de Soja , Proteínas de Soja/química , Isoflavonas/química , Glycine max/química , Antioxidantes/química , Manipulação de Alimentos/métodos , Temperatura Alta
10.
Int J Biol Macromol ; 270(Pt 2): 132513, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777018

RESUMO

With the increasingly mature research on protein-based multi-component systems at home and abroad, the current research on protein-based functional systems has also become a hot spot and focus in recent years. In the functional system, the types of functional factors and their interactions with other components are usually considered to be the subjective factors of the functional strength of the system. Because this process is accompanied by the transfer of protons and electrons in the system, it has antioxidant, antibacterial and anti-inflammatory properties. Polyphenols and polysaccharides have the advantages of wide source, excellent functionality and good compatibility with proteins, and have become excellent and representative functional factors. However, polyphenols and polysaccharides are usually accompanied by poor stability, poor solubility and low bioavailability when used as functional factors. Therefore, the effect of separate release and delivery will inevitably lead to non-significant or direct degradation. After forming a multi-component composite system with the protein, the functional factor will form a stable system driven by hydrogen bonds, hydrophobic forces and electrostatic forces between the functional factor and the protein. When used as a delivery system, it will protect the functional factor, and when released, through the specific recognition of the cell membrane receptor signal, the effect of fixed-point delivery is achieved. In addition, this multi-component composite system can also form a functional composite film by other means, which has a long-term significance for prolonging the shelf life of food and carrying out specific antibacterial.


Assuntos
Embalagem de Alimentos , Polifenóis , Polissacarídeos , Polifenóis/química , Polissacarídeos/química , Embalagem de Alimentos/métodos , Proteínas/química , Humanos , Antioxidantes/química , Antioxidantes/farmacologia
11.
Food Chem ; 451: 139530, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703723

RESUMO

With increasing consumer health awareness and demand from some vegans, plant proteins have received a lot of attention. Plant proteins have many advantages over animal proteins. However, the application of plant proteins is limited by a number of factors and there is a need to improve their functional properties to enable a wider range of applications. This paper describes the advantages and disadvantages of traditional methods of modifying plant proteins and the appropriate timing for their use, and collates and describes a method with fewer applications in the food industry: the Hofmeister effect. It is extremely simple but efficient in some respects compared to traditional methods. The paper provides theoretical guidance for the further development of plant protein-based food products and a reference value basis for improving the functional properties of proteins to enhance their applications in the food industry, pharmaceuticals and other fields.


Assuntos
Proteínas de Plantas , Proteínas de Plantas/química , Manipulação de Alimentos
12.
Food Chem X ; 22: 101430, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38736981

RESUMO

Current research on maize germination suffers from long sampling intervals, and the relationship between the starch structure and the processing properties of flour in maize is still unclear. This study observed the effect of germination on the structure and composition of maize starch and the processing properties of maize flour over a 72 h period using a short interval sampling method. At 36 h, the short-range ordered structure, crystallinity, and enthalpy of starch reached the highest values of 1.02, 34.30%, and 9.90 J/g, respectively. At 72 h, the ratios of rapidly-digested starch (RDS) and slowly-digested starch (SDS) enhanced to 29.37% and 28.97%; the RS content reduced to 35.37%; and the flow properties of the starch were improved. This study enhances the understanding of the effects of germination on the processing properties of maize starch and flour, determines the appropriate application, and recommends the use of germination in the food industry.

13.
Gels ; 10(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38786218

RESUMO

Plant proteins have the advantages of low cost and high yield, but they are still not comparable to animal proteins in processing due to factors such as gelation and solubility. How to enhance the processing performance of plant proteins by simple and green modification means has become a hot research topic nowadays. Based on the above problems, we studied the effect of gel induction on its properties. In this study, a pea protein-zein complex was prepared by the pH cycle method, and the effects of different induced gel methods on the gel properties of the complex protein were studied. The conclusions are as follows: All three gel induction methods can make the complex protein form a gel system, among which the gel strength of heat treatment and the TG enzyme-inducted group is the highest (372.84 g). Through the observation of the gel microstructure, the gel double network structure disappears and the structure becomes denser, which leads to a stronger water-binding state of the gel sample in the collaborative treatment group. In the simulated digestion experiment, heat treatment and enzyme-induced samples showed the best slow-release effect. This study provides a new method for the preparation of multi-vegetable protein gels and lays a theoretical foundation for their application in food processing.

14.
Food Chem ; 451: 139450, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670018

RESUMO

The effects of postharvest ripening of corn on the mechanisms of starch and protein interactions were investigated using molecular dynamics and several chemical substances. Sodium dodecyl sulfate (SDS) treatment all significantly affected the starch content, molecular weight of proteins, relative crystallinity, pasting characteristics and dynamic viscoelasticity in samples before and after postharvest ripening. In the corn that had not undergone postharvest ripening, there were also significant electrostatic interactions and hydrogen bonds between starch and protein. In addition, molecular dynamics had demonstrated that the forces between starch and protein in corn were mainly hydrophobic interactions, electrostatic interaction, and hydrogen bonds. Compared with zein, corn glutelin was more tightly bound to starch. The binding energy of starch to both proteins was reduced in after postharvest-ripened corn. This study laid a rationale for investigating the change mechanism of corn postharvest ripening quality and improving processing property and edible quality of corn.


Assuntos
Proteínas de Plantas , Amido , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/química , Zea mays/metabolismo , Amido/química , Amido/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Zeína/química , Zeína/metabolismo , Manipulação de Alimentos , Peso Molecular , Viscosidade , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Interações Hidrofóbicas e Hidrofílicas
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 398-404, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38632057

RESUMO

Objective: To explore the effectiveness of irreducible intertrochanteric femoral fracture in the elderly by treating with folding top technique and right-angle pliers prying and pulling under G-arm X-ray fluoroscopy. Methods: The clinical data of 74 elderly patients with irreducible intertrochanteric femoral fracture admitted between February 2016 and December 2022 and met the selection criteria were retrospectively analyzed. Among them, 38 cases were treated with folding top technique combined with right-angle pliers prying and pulling under G-arm X-ray fluoroscopy and intramedullary nailing fixation (study group), and 36 cases were treated with limited open reduction combined with other reduction methods and intramedullary nailing fixation (control group). There was no significant difference in baseline data between the two groups, such as age, gender, cause of injury, affected side and classification of fractures, complicated medical diseases, and time from injury to operation ( P>0.05). The operation time, intraoperative blood loss, hospital stay, fracture reduction time, fracture healing time, and complications of the two groups were recorded and compared. The quality of fracture reduction was evaluated by Baumgaertner et al. and Chang et al. fracture reduction standards. Results: Patients in both groups were followed up 10-14 months, with an average of 12 months. The operation time and intraoperative blood loss in the study group were significantly less than those in the control group ( P<0.05), there was no significant difference in hospital stay between the two groups ( P>0.05). At 2 days after operation, according to the fracture reduction standards of Baumgaertner et al. and CHANG Shimin et al., the quality of fracture reduction in the study group was better than that in the control group, and the fracture reduction time in the study group was shorter than that in the control group, with significant differences ( P<0.05). After operation, the fractures of the two groups all healed, and there was no significant difference in healing time between the two groups ( P>0.05). During the follow-up, there was no complication such as incision infection, internal fixation failure, deep venous thrombosis of lower limbs, intramedullary nail breakage, spiral blade cutting, or hip varus in the two groups, except for 2 cases of coxa vara in the control group. Conclusion: For the irreducible intertrochanteric femoral fracture, using folding top technique combined with right-angle pliers prying and pulling under G-arm X-ray fluoroscopy can obviously shorten the operation time, reduce the intraoperative blood loss, and improve the quality of fracture reduction.


Assuntos
Fixação Intramedular de Fraturas , Fraturas do Quadril , Humanos , Idoso , Perda Sanguínea Cirúrgica , Estudos Retrospectivos , Raios X , Resultado do Tratamento , Pinos Ortopédicos , Fraturas do Quadril/cirurgia , Fluoroscopia , Consolidação da Fratura
16.
Int J Biol Macromol ; 265(Pt 2): 130987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508559

RESUMO

Among the common natural biomolecules, the excellent properties of proteins have attracted extensive attention from researchers for functional applications, however, in native form proteins have many limitations in the performance of their functional attribute. However, with the deepening of research, it has been found that the combination of natural active substances such as polyphenols, polysaccharides, etc. with protein molecules will make the composite system have stronger functional properties, while the utilization of pH-driven method, ultrasonic treatment, heat treatment, etc. not only provides a guarantee for the overall protein-based composite system, but also gives more possibilities to the protein-composite system. Protein composite systems are emerging in the fields of novel active packaging, functional factor delivery systems and gel systems with high medical value. The products of these protein composite systems usually have high functional properties, mainly due to the interaction of the remaining natural active substances with protein molecules, which can be broadly categorized into covalent interactions and non-covalent interactions, and which, despite the differences in these interactions, together constitute the cornerstone for the stability of protein composite systems and for in-depth research.


Assuntos
Alimentos , Hipertermia Induzida , Embalagem de Medicamentos , Polifenóis , Embalagem de Produtos , Embalagem de Alimentos
17.
J Agric Food Chem ; 72(14): 7845-7860, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501913

RESUMO

Ginseng is widely recognized for its diverse health benefits and serves as a functional food ingredient with global popularity. Ginsenosides with a broad range of pharmacological effects are the most crucial active ingredients in ginseng. This study aimed to derive ginseng glucosyl oleanolate (GGO) from ginsenoside Ro through enzymatic conversion and evaluate its impact on liver cancer in vitro and in vivo. GGO exhibited concentration-dependent HepG2 cell death and markedly inhibited cell proliferation via the MAPK signaling pathway. It also attenuated tumor growth in immunocompromised mice undergoing heterograft transplantation. Furthermore, GGO intervention caused a modulation of gut microbiota composition by specific bacterial populations, including Lactobacillus, Bacteroides, Clostridium, Enterococcus, etc., and ameliorated SCFA metabolism and colonic inflammation. These findings offer promising evidence for the potential use of GGO as a natural functional food ingredient in the prevention and treatment of cancer.


Assuntos
Ingredientes de Alimentos , Microbioma Gastrointestinal , Ginsenosídeos , Neoplasias Hepáticas , Panax , Camundongos , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/metabolismo , Panax/metabolismo , Neoplasias Hepáticas/tratamento farmacológico
18.
Ultrason Sonochem ; 104: 106819, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387223

RESUMO

Transglutaminase (TGase) was added to soy protein isolate (SPI) dispersion after the combination treatment of high intensity ultrasound (HIU) and high hydrostatic pressure (HHP) to catalyze the formation of cold gel, which was used to encapsulate riboflavin. The structure, physicochemical properties and in vitro digestion characteristics of riboflavin-loaded SPI cold gel were investigated. HIU-HHP combined treatment enhanced the strength, water retention, elastic property, thermal stability and protein denaturation degree of riboflavin-loaded SPI cold gels, and improved the gel network structure, resulting in a higher encapsulation efficiency of riboflavin and its chemical stability under heat and light treatment. HIU-HHP combined treatment reduced the erosion and swelling of SPI cold gel in simulated gastrointestinal fluid, and improved the sustained release effect of SPI gel on riboflavin by changing the digestion mode and rate of gel. In addition, HIU-HHP combined treated gels promoted the directional release of riboflavin in the simulated intestinal fluid, thereby improving its bioaccessibility, which was related to the secondary structure orderliness, tertiary conformation tightness and aggregation degree of protein during the gastrointestinal digestion. Therefore, HIU-HHP combined treatment technology had potential application value in improving the protection, sustained/controlled release and delivery of SPI cold gels for sensitive bioactive compounds.


Assuntos
Temperatura Alta , Proteínas de Soja , Proteínas de Soja/química , Pressão Hidrostática , Géis , Digestão
19.
Foods ; 13(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254508

RESUMO

Microwave intermittent drying was carried out on newly harvested corn kernels to study the effects of different microwave intermittent powers (900 W, 1800 W, 2700 W, and 3600 W) on the structural and functional properties of zein in corn kernels. The results showed that microwave drying could increase the thermal stability of zein in corn kernels. The solubility, emulsification activity index, and surface hydrophobicity increased under 1800 W drying power, which was due to the unfolding of the molecular structure caused by the increase in the content of irregular structure and the decrease in the value of particle size. At a drying power of 2700 W, there was a significant increase in grain size values and ß-sheet structure. This proves that at this time, the corn proteins in the kernels were subjected to the thermal effect generated by the higher microwave power, which simultaneously caused cross-linking and aggregation within the proteins to form molecular aggregates. The solubility, surface hydrophobicity, and other functional properties were reduced, while the emulsification stability was enhanced by the aggregates. The results of the study can provide a reference for the in-depth study of intermittent corn microwave drying on a wide range of applications of zein in corn kernels.

20.
Int J Biol Macromol ; 254(Pt 2): 127827, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926314

RESUMO

The interaction between starch and protein during food processing is crucial for controlling food quality. This study aims to understand the interactions between corn starch and black bean protein isolate (BBPI) at various gelatinization phases and their effects on the physicochemical properties of the blends. BBPI reduced the rheological properties of the corn starch/BBPI mixed system during gelatinization, increasing light transmittance and gelatinization temperature, while decreasing total viscosity and enthalpy change. The changes in starch and protein microstructure during gelatinization indicated that BBPI adhered to the starch particle surface or partially penetrated the swollen starch particles. Fourier transform infrared spectroscopy (FT-IR) revealed that BBPI decreased the number of hydrogen bonds within starch, with no newly formed functional groups in the mixed system. Furthermore, BBPI reduced the composite relative crystallinity (RC). The effect of protein addition on water migration in the mixed system demonstrates that protein and starch compete for water during gelatinization, preventing water molecules from diffusing into starch particles.


Assuntos
Amido , Zea mays , Amido/química , Zea mays/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Viscosidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA