Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1405715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933921

RESUMO

In recent years, burgeoning research has underscored the pivotal role of non-coding RNA in orchestrating the growth, development, and pathogenesis of various diseases across organisms. However, despite these advances, our understanding of the specific contributions of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) to lens development remains notably limited. Clarifying the intricate gene regulatory networks is imperative for unraveling the molecular underpinnings of lens-related disorders. In this study, we aimed to address this gap by conducting a comprehensive analysis of the expression profiles of messenger RNAs (mRNAs), lncRNAs, and circRNAs at critical developmental time points of the mouse lens, encompassing both embryonic (E10.5, E12.5, and E16.5) and postnatal stages (P0.5, P10.5, and P60). Leveraging RNA-sequencing technology, we identified key transcripts pivotal to lens development. Our analysis revealed differentially expressed (DE) mRNAs, lncRNAs, and circRNAs across various developmental stages. Particularly noteworthy, there were 1831 co-differentially expressed (CO-DE) mRNAs, 150 CO-DE lncRNAs, and 13 CO-DE circRNAs identified during embryonic stages. Gene Ontology (GO) enrichment analysis unveiled associations primarily related to lens development, DNA conformational changes, and angiogenesis among DE mRNAs and lncRNAs. Furthermore, employing protein-protein interaction networks, mRNA-lncRNA co-expression networks, and circRNA-microRNA-mRNA networks, we predicted candidate key molecules implicated in lens development. Our findings underscore the pivotal roles of lncRNAs and circRNAs in this process, offering fresh insights into the pathogenesis of lens-related disorders and paving the way for future exploration in this field.

2.
Adv Sci (Weinh) ; : e2402457, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940427

RESUMO

Transmembrane protein 52B (TMEM52B), a newly identified tumor-related gene, has been reported to regulate various tumors, yet its role in nasopharyngeal carcinoma (NPC) remains unclear. Transcriptomic analysis of NPC cell lines reveals frequent overexpression of TMEM52B, and immunohistochemical results show that TMEM52B is associated with advanced tumor stage, recurrence, and decreased survival time. Depleting TMEM52B inhibits the proliferation, migration, invasion, and oncogenesis of NPC cells in vivo. TMEM52B encodes two isoforms, TMEM52B-P18 and TMEM52B-P20, differing in their N-terminals. While both isoforms exhibit similar pro-oncogenic roles and contribute to drug resistance in NPC, TMEM52B-P20 differentially promotes metastasis. This functional discrepancy may be attributed to their distinct subcellular localization; TMEM52B-P18 is confined to the cytoplasm, while TMEM52B-P20 is found both at the cell membrane and in the cytoplasm. Mechanistically, cytoplasmic TMEM52B enhances AKT phosphorylation by interacting with phosphoglycerate kinase 1 (PGK1), fostering NPC growth and metastasis. Meanwhile, membrane-localized TMEM52B-P20 promotes E-cadherin ubiquitination and degradation by facilitating its interaction with the E3 ubiquitin ligase NEDD4, further driving NPC metastasis. In conclusion, the TMEM52B-P18 and TMEM52B-P20 isoforms promote the metastasis of NPC cells through different mechanisms. Drugs targeting these TMEM52B isoforms may offer therapeutic benefits to cancer patients with varying degrees of metastasis.

3.
Mol Neurobiol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907070

RESUMO

Spinal cord injury (SCI) is a serious central nervous system disease with no effective treatment strategy presently due to its complex pathogenic mechanism. N6-methyladenosine (m6A) methylation modification plays an important role in diverse physiological and pathological processes. However, our understanding of the potential mechanisms of messenger RNA (mRNA) and long non-coding RNAs (lncRNA) m6A methylation in SCI is currently limited. Here, comprehensive m6A profiles and gene expression patterns of mRNAs and lncRNAs in spinal cord tissues after SCI were identified using microarray analysis of immunoprecipitated methylated RNAs. A total of 3745 mRNAs (2343 hypermethylated and 1402 hypomethylated) and 738 lncRNAs (488 hypermethylated and 250 hypomethylated) were differentially methylated with m6A modifications in the SCI and sham rats. Functional analysis revealed that differentially m6A-modified mRNAs were mainly involved in immune inflammatory response, nervous system development, and focal adhesion pathway. In contrast, differentially m6A-modified lncRNAs were mainly related to antigen processing and presentation, the apoptotic process, and the mitogen-activated protein kinases (MAPKs) signaling pathway. In addition, combined analysis of m6A methylation and RNA expression results revealed that 1636 hypermethylated mRNAs and 262 hypermethylated lncRNAs were up-regulated, and 1571 hypomethylated mRNAs and 204 lncRNAs were down-regulated. Furthermore, we validated the altered levels of m6A methylation and RNA expression of five mRNAs (CD68, Gpnmb, Lilrb4, Lamp5, and Snap25) and five lncRNAs (XR_360518, uc.393 + , NR_131064, uc.280 - , and XR_597251) using MeRIP-qPCR and qRT-PCR. This study expands our understanding of the molecular mechanisms underlying m6A modification in SCI and provides novel insights to promote functional recovery after SCI.

4.
Int J Biol Macromol ; 270(Pt 1): 132278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750856

RESUMO

Leeches secrete various biologically active substances which have important medical and pharmaceutical values in antithrombotic treatments. Here, we provide a high quality genome of two Asian medicinal leeches Hirudo nipponia and Hirudo tianjinensis, based on which, we identified 22 antithrombotic gene families, including fourteen coagulation inhibitors, four platelet aggregation inhibitors, three fibrinolysis enhancers, and one tissue penetration enhancer. The total numbers of antithrombotic genes were similar between H. nipponia (N = 86) and H. tianjinensis (N = 83). Molecular evolution analysis showed that no significant differences were detected between the two species in any of the three selection indices (dN, dS, and dN/dS), nor in the number of sites under positive/purifying selection. RNA-Seq based gene expression analysis showed that the overall expression patterns of the antithrombotic gene families were not significantly deviated between the two species. Our results indicated that there were rather close similarities between the two leeches on genomic characteristics, especially for the molecular evolution and expression of antithrombotic genes. Our study provides the most comprehensive collection of antithrombotic biomacromolecules from the two Asian medicinal leeches to date. These results will greatly facilitate the research and application of leech derivatives for medical and pharmaceutical purposes of thrombosis.


Assuntos
Fibrinolíticos , Genômica , Sanguessugas , Animais , Sanguessugas/genética , Genômica/métodos , Fibrinolíticos/farmacologia , Filogenia , Evolução Molecular , Genoma
5.
Genes (Basel) ; 15(2)2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397154

RESUMO

Despite being a non-hematophagous leech, Whitmania pigra is widely used in traditional Chinese medicine for the treatment of antithrombotic diseases. In this study, we provide a high quality genome of W. pigra and based on which, we performed a systematic identification of the potential antithrombotic genes and their corresponding proteins. We identified twenty antithrombotic gene families including thirteen coagulation inhibitors, three platelet aggregation inhibitors, three fibrinolysis enhancers, and one tissue penetration enhancer. Unexpectedly, a total of 79 antithrombotic genes were identified, more than a typical blood-feeding Hirudinaria manillensis, which had only 72 antithrombotic genes. In addition, combining with the RNA-seq data of W. pigra and H. manillensis, we calculated the expression levels of antithrombotic genes of the two species. Five and four gene families had significantly higher and lower expression levels in W. pigra than in H. manillensis, respectively. These results showed that the number and expression level of antithrombotic genes of a non-hematophagous leech are not always less than those of a hematophagous leech. Our study provides the most comprehensive collection of antithrombotic biomacromolecules from a non-hematophagous leech to date and will significantly enhance the investigation and utilization of leech derivatives in thrombosis therapy research and pharmaceutical applications.


Assuntos
Sanguessugas , Trombose , Animais , Humanos , Fibrinolíticos , Sanguessugas/genética , Trombose/genética , Inibidores da Agregação Plaquetária , Cromossomos
6.
Nat Commun ; 14(1): 8052, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052783

RESUMO

[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM), a star molecule in the fullerene field, has found wide applications in materials science. Herein, electrosynthesis of buckyballs with fused-ring systems has been achieved through radical α-C-H functionalization of the side-chain ester for both PCBM and its analogue, [6,6]-phenyl-C61-propionic acid methyl ester (PCPM), in the presence of a trace amount of oxygen. Two classes of buckyballs with fused bi- and tricyclic carbocycles have been electrochemically synthesized. Furthermore, an unknown type of a bisfulleroid with two tethered [6,6]-open orifices can also be efficiently generated from PCPM. All three types of products have been confirmed by single-crystal X-ray crystallography. A representative intramolecularly annulated isomer of PCBM has been applied as an additive to inverted planar perovskite solar cells and boosted a significant enhancement of power conversion efficiency from 15.83% to 17.67%.

7.
Food Chem X ; 20: 100962, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144777

RESUMO

Muscle fiber type is a major factor in pork meat quality, however, the role of post-translational protein modifications, especially succinylation, in the regulation of muscle fiber type is not fully understood. Here we performed protein succinylation profiles of fast-type biceps femoris (BF) and slow-type soleus (SOL) muscles. A total of 4,221 succinylation sites were identified from these samples, of which 294 sites were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these succinylated proteins were mainly involved in glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Succinylation modification of the CRAT and RAB10 proteins was verified by co-immunoprecipitation. Protein-protein interaction (PPI) network analysis unveiled the interactions of these succinylated proteins that regulate pig myofiber type conversion. This investigation offers fresh perspectives into the molecular roles of protein succinylation in the regulation of pig myofiber type transformation and meat quality.

8.
Biomed Pharmacother ; 163: 114759, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105077

RESUMO

The clinical treatment of AML is dominated by "7 + 3" therapy, but it often shows great toxicity and limited therapeutic efficacy in application. Therefore, it is urgent to develop novel therapeutic strategies to achieve safe and efficient treatment of AML. Small-molecule inhibitors have the characteristics of high specificity, low off-target toxicity and remarkable therapeutic effect, and are receiving more and more attention in tumor therapy. In this study, we screened a library of 1972 FDA-approved small molecular compounds for those that induced the inflammatory death of AML cells, among which the TLR8 agonist Motolimod (MTL) showed stronger anti-AML activity in the animal model but slight affection on normal lymphocytes in control mice. In terms of mechanism, cellular experiments in AML cell lines proved that TLR8 and LKB1/AMPK are the key distinct mechanisms for MTL triggered caspase-3-dependent cell death and the expression of a large number of inflammatory factors. In conclusion, our findings identified the immunoactivator MTL as a single agent exerting significant anti-AML activity in vitro and in vivo, with strong potential for clinical translation.


Assuntos
Leucemia Mieloide Aguda , Receptor 8 Toll-Like , Animais , Camundongos , Leucemia Mieloide Aguda/metabolismo , Benzazepinas/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Linhagem Celular Tumoral
9.
Mol Genet Genomic Med ; 11(5): e2140, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36670079

RESUMO

BACKGROUND: Congenital ectopia lentis (EL) refers to the congenital dysplasia or weakness of the lens suspensory ligament, resulting in an abnormal position of the crystalline lens, which can appear as isolated EL or as an ocular manifestation of a syndrome, such as the Marfan syndrome. The fibrillin-1 protein encoded by the FBN1 gene is an essential component of the lens zonules. Mutations in FBN1 are the leading causes of congenital EL and Marfan syndrome. Owing to the complexity and individual heterogeneity of FBN1 gene mutations, the correlation between FBN1 mutation characteristics and various clinical phenotypes remains unclear. METHODS: This study describes the clinical characteristics and identifies possible causative genes in eight families with Marfan syndrome or isolated EL using Sanger and whole-exome sequencing. RESULTS: Eight FBN1 mutations were identified in these families, of which three (c.5065G > C, c.1600 T > A, and c.2210G > C) are reported for the first time. Based on in silico analyses, we hypothesized that these mutations may be pathogenic by affecting the fibrillin-1 protein structure and function. CONCLUSION: These findings expand the number of known mutations involved in EL and provide a reference for the research on their genotype and phenotype associations.


Assuntos
Ectopia do Cristalino , Síndrome de Marfan , Humanos , População do Leste Asiático , Ectopia do Cristalino/genética , Ectopia do Cristalino/patologia , Fibrilina-1/genética , Fibrilinas , Síndrome de Marfan/genética , Síndrome de Marfan/patologia
10.
ACS Appl Mater Interfaces ; 14(32): 36918-36926, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921546

RESUMO

To achieve high-performance polymer semiconductors, it is crucially important to explore novel and effective synthesis strategies. Here, chain-extending polymerization as a synthesis strategy to design polymer semiconductors is introduced. Furthermore, we demonstrate its superiority over a conventional synthesis strategy─one-pot polymerization. Diketopyrrolopyrrole-thieno[3,2-b]thiophene-containing polymers (PDPPTT and PDPPTT-vinylene) are used in this study. PDPPTT and PDPPTT-vinylene are synthesized through one-pot polymerization and chain-extending polymerization, respectively. The utilization of this novel strategy enhances the hole/electron mobilities of PDPPTT-vinylene to up to 3.70/2.96 cm2 V-1 s-1 (compared to 2.71/0.63 cm2 V-1 s-1 for PDPPTT), thereby achieving the required performance for organic circuits like inverters and ring oscillators. The significant improvement in the transistor performance of PDPPTT-vinylene is attributed to the introduced vinylene linking units during the polymerization process, which can fine-tune the electronic structure, expand π-conjugation, and induce stronger intermolecular π-π interactions with more significant crystallization. These results demonstrate that chain-extending polymerization is an effective synthesis strategy for developing high-performance polymer semiconductors.

11.
Front Nutr ; 9: 926024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967789

RESUMO

Adipose tissue represents a candidate target for the treatment of metabolic illnesses, such as obesity. Brown adipose tissue (BAT), an important heat source within the body, promotes metabolic health through fat consumption. Therefore, the induction of white fat browning may improve lipid metabolism. Currently, the specific roles of circRNA in BAT and white adipose tissue (WAT) remain elusive. Herein, we conducted circRNA expression profiling of mouse BAT and WAT using RNA-seq. We identified a total of 12,183 circRNAs, including 165 upregulated and 79 downregulated circRNAs between BAT and WAT. Differentially expressed (DE) circRNAs were associated with the mitochondrion, mitochondrial part, mitochondrial inner membrane, mitochondrial envelope, therefore, these circRNAs may affect the thermogenesis and lipid metabolism of BAT. Moreover, DE circRNAs were enriched in browning- and thermogenesis-related pathways, including AMPK and HIF-1 signaling. In addition, a novel circRNA, circOgdh, was found to be highly expressed in BAT, formed by back-splicing of the third and fourth exons of the Ogdh gene, and exhibited higher stability than linear Ogdh. circOgdh was mainly distributed in the cytoplasm and could sponge miR-34a-5p, upregulating the expression of Atgl, a key lipolysis gene, which enhanced brown adipocyte lipolysis and suppressed lipid droplet accumulation. Our findings offer in-depth knowledge of the modulatory functions of circRNAs in BAT adipogenesis.

12.
Front Genet ; 13: 928683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035136

RESUMO

Marfan syndrome, an autosomal dominant disorder of connective tissue, is primarily caused by mutations in the fibrillin-1 (FBN1) gene, which encodes the protein fibrillin-1. The protein is composed of epidermal growth factor-like (EGF-like) domains, transforming growth factor beta-binding protein-like (TB) domains, and hybrid (Hyb) domains and is an important component of elastin-related microfibrils in elastic fiber tissue. In this study, we report a cysteine to tyrosine substitution in two different domains of fibrillin-1, both of which cause Marfan syndrome with ocular abnormalities, in two families. Using protease degradation and liquid chromatography-tandem mass spectrometry analyses, we explored the different effects of substitution of cysteine by tyrosine in an EGF-like and a calcium-binding (cb) EGF-like domain on protein stability. The results showed that cysteine mutations in the EGF domain are more likely to result in altered proteolytic sensitivity and thermostability than those in the cbEGF domain. Furthermore, cysteine mutations can lead to new enzymatic sites exposure or hidden canonical cleavage sites. These results indicate the differential clinical phenotypes and molecular pathogenesis of Marfan syndrome caused by cysteine mutations in different fibrillin-1 domains. These results strongly suggest that failure to form disulfide bonds and abnormal proteolysis of fibrillin-1 caused by cysteine mutations may be an important factor underlying the pathogenesis of diseases caused by fibrillin-1 mutations, such as Marfan syndrome.

13.
Endocr J ; 69(1): 23-33, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34456194

RESUMO

Chronic stress affects the reproductive health of mammals; however, the impact of adrenocorticotropin hormone (ACTH) level elevation during chronic stress on the reproduction of weaned sows remains unclear. In this study, nine weaned sows with the same parturition date were randomly divided into control group (n = 4) and ACTH group (n = 5). Each group received intravenous administration of ACTH three times daily for 7 days. Blood samples were collected every 3 h after injection. A radioimmunoassay was used to measure the concentrations of cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P4) and estradiol-17ß (E2) in the blood. Estrus was determined according to changes in the vulva and the boar contact test. The mRNA expressions of glucocorticoid receptor, FSH receptor, LH receptor (LHR) in the corpus luteum (CL) were detected by qRT-PCR. The results showed that ACTH administration substantially delayed the initiation of estrus and the pre-ovulatory LH peak. The sows of control group ovulated within 10 days and the ovulation rate was 100%, while it was 60% in the ACTH group. Two sows of ACTH group showed pseudo-estrus. The E2 concentrations significantly decreased in the ACTH group at 36 h, 42 h and 66 h of the experimental period. The P4 concentrations in the ACTH group significantly decreased at 132, 138, and 147 h of the experimental period. ACTH significantly reduced the LHR mRNA expression in CLs. In conclusion, long-term repeated ACTH administration affects the endocrinology, estrus onset, and ovarian function of weaned sows.


Assuntos
Hormônio Adrenocorticotrópico , Estro , Hormônio Adrenocorticotrópico/farmacologia , Animais , Estradiol , Estro/fisiologia , Feminino , Hormônio Luteinizante , Mamíferos/metabolismo , Ovulação , Progesterona , Suínos , Desmame
14.
Cell Death Dis ; 12(2): 201, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608495

RESUMO

Because of the lack of sensitivity to radiotherapy and chemotherapy, therapeutic options for renal clear cell carcinoma (KIRC) are scarce. Long noncoding RNAs (lncRNAs) play crucial roles in the progression of cancer. However, their functional roles and upstream mechanisms in KIRC remain largely unknown. Exploring the functions of potential essential lncRNAs may lead to the discovery of novel targets for the diagnosis and treatment of KIRC. Here, according to the integrated analysis of RNA sequencing and survival data in TCGA-KIRC datasets, cyclin-dependent kinase inhibitor 2B antisense lncRNA (CDKN2B-AS1) was discovered to be the most upregulated among the 14 lncRNAs that were significantly overexpressed in KIRC and related to shorter survival. Functionally, CDKN2B-AS1 depletion suppressed cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, CDKN2B-AS1 exerted its oncogenic activity by recruiting the CREB-binding protein and SET and MYND domain-containing 3 epigenetic-modifying complex to the promoter region of Ndc80 kinetochore complex component (NUF2), where it epigenetically activated NUF2 transcription by augmenting local H3K27ac and H3K4me3 modifications. Moreover, we also showed that CDKN2B-AS1 interacted with and was stabilized by insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an oncofetal protein showing increased levels in KIRC. The Kaplan-Meier method and receiver operating curve analysis revealed that patients whose IGF2BP3, CDKN2B-AS1 and NUF2 are all elevated showed the shortest survival time, and the combined panel (containing IGF2BP3, CDKN2B-AS1, and NUF2) possessed the highest accuracy in discriminating high-risk from low-risk KIRC patients. Thus, we conclude that the stabilization of CDKN2B-AS1 by IGF2BP3 drives the malignancy of KIRC through epigenetically activating NUF2 transcription and that the IGF2BP3/CDKN2B-AS1/NUF2 axis may be an ideal prognostic and diagnostic biomarker and therapeutic target for KIRC.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Ciclo Celular/genética , Epigênese Genética , Neoplasias Renais/genética , Estabilidade de RNA , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Ativação Transcricional , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metilação de DNA , Bases de Dados Genéticas , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Carga Tumoral
15.
Research (Wash D C) ; 2020: 2059190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149279

RESUMO

With the recent advance in chemical modification of fullerenes, electrosynthesis has demonstrated increasing importance in regioselective synthesis of novel fullerene derivatives. Herein, we report successively regioselective synthesis of stable tetra- and hexafunctionalized [60]fullerene derivatives. The cycloaddition reaction of the electrochemically generated dianions from [60]fulleroindolines with phthaloyl chloride regioselectively affords 1,2,4,17-functionalized [60]fullerene derivatives with two attached ketone groups and a unique addition pattern, where the heterocycle is rearranged to a [5,6]-junction and the carbocycle is fused to an adjacent [6,6]-junction. This addition pattern is in sharp contrast with that of the previously reported biscycloadducts, where both cycles are appended to [6,6]-junctions. The obtained tetrafunctionalized compounds can be successively manipulated to 1,2,3,4,9,10-functionalized [60]fullerene derivatives with an intriguing "S"-shaped configuration via a novel electrochemical protonation. Importantly, the stability of tetrafunctionalized [60]fullerene products allows them to be applied in planar perovskite solar cells as efficient electron transport layers.

16.
Chem Sci ; 11(2): 384-388, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32153753

RESUMO

The efficient and regioselective electrosynthesis of tetra- and hexa-functionalized [60]fullerene derivatives with unprecedented addition patterns has been achieved. The tetra-functionalized [60]fullerene derivative with an intriguing 1,2,4,17-addition pattern is regioselectively obtained by cyclization reaction of the dianionic species generated electrochemically from a [60]fulleroindoline with 1,2-bis(bromomethyl)benzene at 0 °C, and can be converted to the more stable 1,2,3,4-adduct at 25 °C. Furthermore, the hexa-functionalized [60]fullerene derivative with the 1,2,3,4,9,10-addition pattern displaying a unique "S"-shaped configuration can be synthesized by protonation of the electrochemically generated dianion of the obtained tetra-functionalized 1,2,4,17-adduct. The structures of the tetra- and hexa-functionalized products have been determined by spectroscopic data and single-crystal X-ray analysis.

17.
Animals (Basel) ; 9(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569476

RESUMO

Prox1 is involved in muscle fiber conversion, adult-onset obesity, and type 2 diabetes. However, information regarding porcine Prox1 and its relationship with meat quality traits is still unknown. In this study, we characterized the full-length cDNA and proximal promoter of two transcript variants of porcine Prox1. Moreover, Prox1 was expressed abundantly in the skeletal muscle and its expression was higher in the soleus muscle than that in the biceps femoris muscle. Its expression pattern in the high and low meat color (redness) value a* groups was similar to that of myoglobin and MyHC I, but opposed to that of MyHC IIB. Importantly, there was a significant positive correlation between Prox1 expression and meat color (redness) value a* (r = 0.3845, p = 0.0394), and a significant negative correlation between Prox1 expression and drip loss (r = -0.4204, p = 0.0232), as well as the ratio of MyHC IIB to MyHC I expression (r = -0.3871, p = 0.0380). In addition, we found that the polymorphisms of three closely linked SNPs in Prox1 promoter 1 were significantly associated with pH24h in a pig population. Taken together, our data provide valuable insights into the characteristics of porcine Prox1 and indicate that Prox1 is a promising candidate gene affecting meat quality traits.

18.
FASEB J ; 33(3): 3264-3278, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30423262

RESUMO

Stress is known to cause corpus luteum (CL) dysfunction, and stress hormones play a critical role in this process. However, the mechanism remains unclear. In this study, weaned sows were injected with synthetic adrenocorticotropic hormone (ACTH) for 7 d; whole-genome bisulfite sequencing (WGBS) and RNA sequencing was used respectively to investigate the systematic association between ACTH administration and DNA methylation in CL and its relationship to gene expression. Results showed that ACTH treatment significantly increased the concentrations of cortisol ( P < 0.05). The genome-wide DNA methylation maps of CL were provided, and the global analysis showed the difference between the 2 groups exists in the chromosomes and feature regions of the genome. A total of 88,559 DMRs were identified and the most DMR-related genes were gathered in terms of metabolic biologic processes, and some DMR-related genes were involved in cellular differentiation. Nine differentially expressed genes were screened out of coexpressed genes and 4 DMR-associated genes that were also differentially expressed ( P < 0.05). In summary, our study firstly provides insight into the regulation of ACTH administration on genomic DNA methylation and gene expression in CL. We revealed a remarkable alteration of DNA methylation in CL caused by ACTH treatment, and identified 4 DMR-related genes that may be involved in the CL function under stress conditions.-Zhao, F., Wu, W., Wei, Q., Shen, M., Li, B., Jiang, Y., Liu, K., Liu, H. Exogenous adrenocorticotropic hormone affects genome-wide DNA methylation and transcriptome of corpus luteum in sows.


Assuntos
Hormônio Adrenocorticotrópico/administração & dosagem , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Metilação de DNA/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Hormônio Adrenocorticotrópico/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sus scrofa
19.
J Lipid Res ; 60(4): 767-782, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552289

RESUMO

In obesity and diabetes, intramuscular fat (IMF) content correlates markedly with insulin sensitivity, which makes IMF manipulation an area of therapeutic interest. Melatonin, an important circadian rhythm-regulating hormone, reportedly regulates fat deposition, but its effects on different types of adipose vary. Little is known about the role of melatonin in IMF deposition. Here, using intramuscular preadipocytes in pigs, we investigated to determine whether melatonin affects or regulates IMF deposition. We found that melatonin greatly inhibited porcine intramuscular preadipocyte proliferation. Although melatonin administration significantly upregulated the expression of adipogenic genes, smaller lipid droplets were formed in intramuscular adipocytes. Additional investigation demonstrated that melatonin promoted lipolysis of IMF by activating protein kinase A and the signaling of ERK1/2. Moreover, melatonin increased thermogenesis in intramuscular adipocytes by enhancing mitochondrial biogenesis and mitochondrial respiration. A mouse model, in which untreated controls were compared with mice that received 3 weeks of melatonin treatment, verified the effect of melatonin on IMF deposition. In conclusion, melatonin reduces IMF deposition by upregulating lipolysis and mitochondrial bioactivities. These data establish a link between melatonin signaling and lipid metabolism in mammalian models and suggest the potential for melatonin administration to treat or prevent obesity and related diseases.


Assuntos
Antioxidantes/farmacologia , Gorduras/antagonistas & inibidores , Lipólise/efeitos dos fármacos , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Gorduras/metabolismo , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Suínos
20.
Am J Physiol Endocrinol Metab ; 316(4): E635-E645, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576242

RESUMO

The mechanism of adipocyte regulation specifically in muscle and the influence of muscle tissue on intramuscular fat deposition are unknown. Our previous studies have shown that myostatin, a myokine, is involved in inhibiting the differentiation of preadipocytes and may be a potential regulator that affects the deposition of intramuscular fat. Myostatin inhibited adipogenesis by downregulating the expression of glucocorticoid receptor (GR) in porcine preadipocytes. However, the mechanism of regulation is not yet clear. In this study, we demonstrate microRNA (miR-124-3p) mediates regulation of GR by myostatin. We found that miR-124-3p can target GR 3'-UTR and negatively regulate GR expression. We demonstrate that overexpression of miR-124-3p can reduce differentiation of 3T3-L1 cells by inhibiting GR, and vice versa. The expression of miR-124-3p was upregulated in 3T3-L1 cells treated with myostatin. Further study revealed that myostatin also promotes the expression of SMAD4 and its transfer and localization to the nucleus. The activated myostatin/SMAD4 signal promotes the expression of miR-124-3p by SMAD4 binding to the promoter region of miR-124-3p. When myostatin or SMAD4 activity is inhibited, the upregulation of miR-124-3p is also inhibited. All of these findings suggested that myostatin could inhibit adipogenic differentiation of 3T3-L1 cells by activating miR-124-3p to inhibit GR. These data may provide an explanation for how myostatin signaling affects intramuscular fat deposition in a tissue-specific manner.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , MicroRNAs/metabolismo , Miostatina/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteína Smad4/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Camundongos , Transdução de Sinais , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA