Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Toxicol Appl Pharmacol ; 486: 116935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648938

RESUMO

Metal exposure is linked to numerous pathological outcomes including cancer, cardiovascular disease, and diabetes. Over the past decades, we have made significant progress in our understanding of how metals are linked to disease, but there is still much to learn. In October 2022, experts studying the consequences of metal exposures met in Montréal, Québec, to discuss recent advances and knowledge gaps for future research. Here, we present a summary of presentations and discussions had at the meeting.


Assuntos
Metais , Neoplasias , Humanos , Neoplasias/induzido quimicamente , Animais , Metais/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos
2.
Metallomics ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38419293

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide, and presently, there is no effective neuroprotective therapy. Zinc is an essential trace element that plays important physiological roles in the central nervous system. Free zinc concentration is tightly regulated by zinc-related proteins in the brain under normal conditions. Disruption of zinc homeostasis, however, has been found to play an important role in the mechanism of brain injury following ischemic stroke. A large of free zinc releases from storage sites after cerebral ischemia, which affects the functions and survival of nerve cells, including neurons, astrocytes, and microglia, resulting in cell death. Ischemia-triggered intracellular zinc accumulation also disrupts the function of blood-brain barrier via increasing its permeability, impairing endothelial cell function, and altering tight junction levels. Oxidative stress and neuroinflammation have been reported to be as major pathological mechanisms in cerebral ischemia/reperfusion injury. Studies have showed that the accumulation of intracellular free zinc could impair mitochondrial function to result in oxidative stress, and form a positive feedback loop between zinc accumulation and reactive oxygen species production, which leads to a series of harmful reactions. Meanwhile, elevated intracellular zinc leads to neuroinflammation. Recent studies also showed that autophagy is one of the important mechanisms of zinc toxicity after ischemic injury. Interrupting the accumulation of zinc will reduce cerebral ischemia injury and improve neurological outcomes. This review summarizes the role of zinc toxicity in cellular and tissue damage following cerebral ischemia, focusing on the mechanisms about oxidative stress, inflammation, and autophagy.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Humanos , Zinco/metabolismo , Doenças Neuroinflamatórias , Estresse Oxidativo , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Autofagia , AVC Isquêmico/metabolismo , Lesões Encefálicas/metabolismo , Traumatismo por Reperfusão/metabolismo
3.
Toxicol Appl Pharmacol ; 484: 116858, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341105

RESUMO

Chronic arsenic exposures are associated with multiple hematologic disturbances, including anemia. The goal of this study was to evaluate associations between arsenic exposures and hematological parameters among men and women who are chronically exposed to elevated levels of arsenic from drinking water. Hematologic analyses were performed on blood collected from 755 participants (45% male and 54% female) in the Health Effects of Arsenic Longitudinal Study (HEALS) cohort, Bangladesh. Herein, we used linear regression models to estimate associations between red blood cell (RBC) parameters (i.e., RBC counts, hematocrit (HCT), hemoglobin (Hgb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC)) and measurements of arsenic exposure (urinary arsenic and urinary arsenic metabolites). Arsenic exposures showed trending associations with decreased RBC counts in both men and women, a positive association with MCV in males, and an inverse association with MCHC among males, but not among non-smoking females. Among men, those who smoked had stronger associations between arsenic exposures and MCHC than non-smoking males. Collectively, our results show that arsenic exposures affect multiple RBC parameters and highlight potentially important sex differences in arsenic-induced hematotoxicity.


Assuntos
Arsênio , Adulto , Feminino , Humanos , Masculino , Arsênio/toxicidade , Estudos Longitudinais , Bangladesh/epidemiologia , Eritrócitos , Índices de Eritrócitos
4.
Heliyon ; 10(2): e25052, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312551

RESUMO

Background: and Purpose: Hemorrhagic transformation (HT) is one of the severe complications in acute ischemic stroke, especially for the patients who undergo recanalization treatment. It is crucial to screen patients who have high risk of HT before recanalization. However, current prediction models based on clinical factors are not ideal for clinical practice. Serum occludin, a biomarker for cerebral ischemia-induced blood-brain barrier disruption, has potential for predicting HT. This study was to investigate whether the combination of serum occludin and clinical risk factors improved the efficacy of predicting HT. Methods: This was a single-center prospective observational study. Baseline clinical data and blood samples of recanalization patients were collected upon admission to our hospital. The level of serum occludin was measured using enzyme-linked immunosorbent assay. The diagnosis of HT was confirmed by CT scans within 36 h post recanalization. Results: A total of 324 patients with recanalization were enrolled and 68 patients presented HT occurrence. HT patients had the higher level of baseline occludin than patients without HT (p < 0.001). Multivariate regression analysis showed that serum occludin level, Alberta Stroke Program Early CT Scores and endovascular therapy were independent risk factors (p < 0.05) for HT after adjusting potential confounders. The combination of serum occludin and clinical risk factors significantly improved the accuracy of predicting HT [area under the curve (AUC, 0.821 vs 0.701, p < 0.001), and net reclassification improvement (31.1 %), integrated discrimination improvement (21.5 %), p < 0.001] compared to a model employing only clinical risk factors. The modified AUC (0.806) of combined model based on 10-fold-cross-validation was still higher than clinical risk model (0.701). Conclusion: The combination of serum occludin and clinical risk factors significantly improved the prediction efficacy for HT, providing a novel potential prediction model to screen for patients with high risk of HT before recanalization in acute ischemic stroke.

5.
Proc Natl Acad Sci U S A ; 121(4): e2310854121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241433

RESUMO

Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5' side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Citosina , Desaminação , Neoplasias Cutâneas/genética , Mutação , Dímeros de Pirimidina , Sítios de Ligação , Raios Ultravioleta , Dano ao DNA , Reparo do DNA/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38069572

RESUMO

Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.

8.
CNS Neurosci Ther ; 30(3): e14450, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721332

RESUMO

BACKGROUND AND PURPOSE: Perihematomal edema (PHE) is one of the severe secondary damages following intracranial hemorrhage (ICH). Studies showed that blood-brain barrier (BBB) injury contributes to the development of PHE. Previous studies showed that occludin protein is a potential biomarker of BBB injury. In the present study, we investigated whether the levels of serum occludin on admission are associated with PHE volumes in ICH patients. METHODS: This cross-sectional study included 90ICH patients and 32 healthy controls.The volumes of hematoma and PHE were assessed using non-contrast cranial CT within 30 min of admission. Blood samples were drawn on admission, and the levels of baseline serum occludin were detected using enzyme-linked immunosorbent assay. Partial correlation analysis and multiple linear regression analysis were performed to evaluate the association between serum occludin levels and PHE volumes in ICH patients. RESULTS: The serum occludin levels in ICH patients were much higher than health controls (median 0.27 vs. 0.13 ng/mL, p < 0.001). At admission, 34 ICH patients (37.78%) had experienced a severe PHE (≥30 mL), and their serum occludin levels were higher compared to those with mild PHE (<30 mL) (0.78 vs. 0.21 ng/mL, p < 0.001). The area under the receiver operating characteristics curve (ROC) of serum occludin level in predicting severe PHE was 0.747 (95% confidence interval CI 0.644-0.832, p < 0.001). There was a significant positive correlation between serum occludin levels and PHE volumes (partial correlation r = 0.675, p < 0.001). Multiple linear regression analysis showed that serum occludin levels remained independently associated with the PHE volumes after adjusting other confounding factors. CONCLUSION: The present study showed that serum occludin levels at admission were independently correlated with PHE volumes in ICH patients, which may provide a biomarker indicating PHE volume change.


Assuntos
Edema Encefálico , Hemorragia Cerebral , Humanos , Biomarcadores , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Estudos Transversais , Edema/complicações , Hematoma , Hemorragias Intracranianas , Ocludina
9.
Toxicol Appl Pharmacol ; 482: 116773, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036231

RESUMO

Changes in gene expression underlie many pathogenic endpoints including carcinogenesis. Metals, like arsenic, alter gene expression; however, the consequences of co-exposures of metals with other stressors are less understood. Although arsenic acts as a co-carcinogen by enhancing the development of UVR skin cancers, changes in gene expression in arsenic UVR co-carcinogenesis have not been investigated. We performed RNA-sequencing analysis to profile changes in gene expression distinct from arsenic or UVR exposures alone. A large number of differentially expressed genes (DEGs) were identified after arsenic exposure alone, while after UVR exposure alone fewer genes were changed. A distinct increase in the number of DEGs was identified after exposure to combined arsenic and UVR exposure that was synergistic rather than additive. In addition, a majority of these DEGs were unique from arsenic or UVR alone suggesting a distinct response to combined arsenic-UVR exposure. Globally, arsenic alone and arsenic plus UVR exposure caused a global downregulation of genes while fewer genes were upregulated. Gene Ontology analysis using the DEGs revealed cellular processes related to chromosome instability, cell cycle, cellular transformation, and signaling were targeted by combined arsenic and UVR exposure, distinct from UVR alone and arsenic alone, while others were related to epigenetic mechanisms such as the modification of histones. This result suggests the cellular functions we identified in this study may be key in understanding how arsenic enhances UVR carcinogenesis and that arsenic-enhanced gene expression changes may drive co-carcinogenesis of UVR exposure.


Assuntos
Arsênio , Neoplasias Cutâneas , Humanos , Arsênio/toxicidade , Transcriptoma , Raios Ultravioleta/efeitos adversos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Carcinogênese
10.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128678

RESUMO

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/genética , Iridovirus/fisiologia , Singapura , Clonagem Molecular , Apoptose , Fosfatases de Especificidade Dupla/genética , Proteínas de Peixes/genética , Filogenia
11.
Commun Biol ; 6(1): 1273, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104187

RESUMO

Arsenic enhances the carcinogenicity of ultraviolet radiation (UVR). However, the mechanisms of arsenic-driven oncogenesis are not well understood. Here, we utilize experimental systems to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures indicate that, by itself, arsenic is not mutagenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis and to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, is observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13, to the best of our knowledge, the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing skin cancer genomics data reveals that only a subset of cancers harbor ID13 and these exhibit an elevated UVR mutagenesis. Our results report a unique mutational signature caused by a co-exposure to two environmental carcinogens and provide comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR.


Assuntos
Arsênio , Neoplasias Cutâneas , Animais , Camundongos , Humanos , Arsênio/toxicidade , Raios Ultravioleta/efeitos adversos , Mutagênicos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Pele
12.
Aging Dis ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37962463

RESUMO

Zinc plays important roles in both physiological and pathological processes in the brain. Accumulation of free zinc in ischemic tissue is recognized to contribute to blood-brain barrier (BBB) disruption following cerebral ischemia, but little is known either about the source of free zinc in microvessels or the mechanism by which free zinc mediates ischemia-induced BBB damage. We utilized cellular and animal models of ischemic stroke to determine the source of high levels of free zinc and the mechanism of free zinc-mediated BBB damage after ischemia. We report that cerebral ischemia elevated the level of extracellular fluid (ECF-Zn) of ischemic brain, leading to exacerbated BBB damage in a rat stroke model. Specifically suppressing zinc release from neurons, utilizing neuronal-specific zinc transporter 3 (ZnT3) knockout mice, markedly reduced ECF-Zn and BBB permeability after ischemia. Intriguingly, the activity of zinc-dependent metalloproteinase-2 (MMP-2) was modulated by ECF-Zn levels. Elevated ECF-Zn during ischemia directly bound to MMP-2 in extracellular fluid, increased its zinc content and augmented MMP-2 activity, leading to the degradation of tight junction protein in cerebral microvessels and BBB disruption. These findings suggest the role of neuronal ZnT3 in modulating ischemia-induced BBB disruption and reveal a novel mechanism of MMP-2 activation in BBB disruption after stroke, demonstrating ZnT3 as an effective target for stroke treatment.

13.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865271

RESUMO

Environmental co-exposures are widespread and are major contributors to carcinogenic mechanisms. Two well-established environmental agents causing skin cancer are ultraviolet radiation (UVR) and arsenic. Arsenic is a known co-carcinogen that enhances UVR's carcinogenicity. However, the mechanisms of arsenic co-carcinogenesis are not well understood. In this study, we utilized primary human keratinocytes and a hairless mouse model to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures revealed that, on its own, arsenic is neither mutagenic nor carcinogenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis as well as to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, was observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13 the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing genomics data from basal cell carcinomas and melanomas revealed that only a subset of human skin cancers harbor ID13 and, consistent with our experimental observations, these cancers exhibited an elevated UVR mutagenesis. Our results provide the first report of a unique mutational signature caused by a co-exposure to two environmental carcinogens and the first comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR. Importantly, our findings suggest that a large proportion of human skin cancers are not formed purely due to UVR exposure but rather due to a co-exposure of UVR and other co-mutagens such as arsenic.

14.
Adv Pharmacol ; 96: 151-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858772

RESUMO

Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.


Assuntos
Arsênio , Neoplasias , Animais , Humanos , Epigênese Genética , Carcinogênese , Carcinógenos
15.
Water (Basel) ; 15(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36936034

RESUMO

Chronic arsenic exposures via the consumption of contaminated drinking water are clearly associated with many deleterious health outcomes, including anemia. Following exposure, trivalent inorganic arsenic (AsIII) is methylated through a series of arsenic (+III oxidation state) methyltransferase (As3MT)-dependent reactions, resulting in the production of several intermediates with greater toxicity than the parent inorganic arsenicals. The extent to which inorganic vs. methylated arsenicals contribute to AsIII-induced hematotoxicity remains unknown. In this study, the contribution of As3MT-dependent biotransformation to the development of anemia was evaluated in male As3mt-knockout (KO) and wild-type, C57BL/6J, mice following 60-day drinking water exposures to 1 mg/L (ppm) AsIII. The evaluation of hematological indicators of anemia revealed significant reductions in red blood cell counts, hemoglobin levels, and hematocrit in AsIII-exposed wild-type mice as compared to unexposed controls. No such changes in the blood of As3mt-KO mice were detected. Compared with unexposed controls, the percentages of mature RBCs in the bone marrow and spleen (measured by flow cytometry) were significantly reduced in the bone marrow of AsIII-exposed wild-type, but not As3mt-KO mice. This was accompanied by increased levels of mature RBCS in the spleen and elevated levels of circulating erythropoietin in the serum of AsIII-exposed wild-type, but not As3mt-KO mice. Taken together, the findings from the present study suggest that As3MT-dependent biotransformation has an essential role in mediating the hematotoxicity of AsIII following drinking water exposures.

16.
Toxicol Appl Pharmacol ; 459: 116345, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526070
17.
Toxicol Appl Pharmacol ; 457: 116294, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283442

RESUMO

Hexavalent chromium [Cr(VI)] is a well-known and widespread environmental contaminant associated with a variety of adverse health effects, in particular lung cancer. The primary route of exposure in humans is through inhalation. Particulate forms of Cr(VI) are the most potent but in vivo studies are difficult. Intratracheal instillation requires highly trained surgical procedures which also limits the number of repeated exposures possible and thus requires high doses. Inhalation studies can deliver lower more chronic doses but are expensive and generate dangerous aerosols. We evaluated an oropharyngeal aspiration exposure route for zinc chromate particles in Wistar rats. Animals were treated once per week for 90 days. We found chromium accumulated in the lungs, blood, and reproductive tissues of all treated animals. Additionally, we found inflammatory indicators in the lung were elevated and circulating lymphocytes had increased chromosomal damage. These results show oropharyngeal aspiration provides a practicable exposure route for chronic and sub-chronic exposures of Cr(VI) particles.

18.
J Oral Pathol Med ; 51(9): 801-809, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35996988

RESUMO

BACKGROUND: Radiation damage to salivary gland is inevitable in head and neck cancer patients receiving radiotherapy. Safe and effective treatments for protecting salivary glands from radiation are still unavailable. Mitochondrial damage is a critical mechanism in irradiated salivary gland; however, treatment targeting mitochondria has not received much attention. Nicotinamide is a key component of the mitochondrial metabolism. Here, we investigated the effects and underlying mechanisms of nicotinamide on protecting irradiated submandibular gland. METHODS: Submandibular gland cells and tissues were randomly divided into four groups: control, nicotinamide alone, radiation alone, and radiation with nicotinamide pretreatment. Cell viability was detected by PrestoBlue cell viability reagent. Histopathological alterations were observed with HE staining. Pilocarpine-stimulated saliva was measured from Wharton's duct. Cell apoptosis was determined by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Nicotinamide phosphoribosyl transferase was examined with immunofluorescence. The levels of nicotinamide adenine dinucleotide, mitochondrial membrane potential, and adenosine triphosphate were measured with the relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. RESULTS: Nicotinamide significantly mitigated radiation damage both in vitro and in vivo. Also, nicotinamide improved saliva secretion and reduced radiation-induced apoptosis in irradiated submandibular glands. Moreover, nicotinamide improved nicotinamide phosphoribosyl transferase and the levels of nicotinamide adenine dinucleotide/adenosine triphosphate and mitochondrial membrane potential, all of which were decreased by radiation in submandibular gland cells. Importantly, nicotinamide protected the mitochondrial ultrastructure from radiation. CONCLUSION: These findings demonstrate that nicotinamide alleviates radiation damage in submandibular gland by replenishing nicotinamide adenine dinucleotide and maintaining mitochondrial function and ultrastructure, suggesting that nicotinamide could be used as a prospective radioprotectant for preventing radiation sialadenitis.


Assuntos
Lesões por Radiação , Glândula Submandibular , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/farmacologia , Humanos , Mitocôndrias , NAD/metabolismo , NAD/farmacologia , Niacinamida/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Pilocarpina/farmacologia , Estudos Prospectivos , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Ratos , Ratos Wistar , Glândula Submandibular/metabolismo
19.
Toxicol Appl Pharmacol ; 452: 116193, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961411

RESUMO

Arsenic exposure produces significant hematotoxicity in vitro and in vivo. Our previous work shows that arsenic (in the form of arsenite, AsIII) interacts with the zinc finger domains of GATA-1, inhibiting the function of this critical transcription factor, and resulting in the suppression of erythropoiesis. In addition to GATA-1, GATA-2 also plays a key role in the regulation of hematopoiesis. GATA-1 and GATA-2 have similar zinc finger domains (C4-type) that are structurally favorable for AsIII interactions. Taking this into consideration, we hypothesized that early stages of hematopoietic differentiation that are dependent on the function of GATA-2 may also be disrupted by AsIII exposure. We found that in vitro AsIII exposures disrupt the erythromegakaryocytic lineage commitment and differentiation of erythropoietin-stimulated primary mouse bone marrow hematopoietic progenitor cells (HPCs), producing an aberrant accumulation of cells in early stages of hematopoiesis and subsequent reduction of committed erythro-megakaryocyte progenitor cells. Arsenic significantly accumulated in the GATA-2 protein, causing the loss of zinc, and disruption of GATA-2 function, as measured by chromatin immunoprecipitation and the expression of GATA-2 responsive genes. Our results show that the attenuation of GATA-2 function is an important mechanism contributing to the aberrant lineage commitment and differentiation of early HPCs. Collectively, findings from the present study suggest that the AsIII-induced disruption of erythro-megakaryopoiesis may contribute to the onset and/or exacerbation of hematological disorders, such as anemia.


Assuntos
Arsênio , Fator de Transcrição GATA2/metabolismo , Animais , Arsênio/metabolismo , Arsênio/toxicidade , Diferenciação Celular/fisiologia , DNA/metabolismo , Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Fatores de Transcrição/genética
20.
Antioxidants (Basel) ; 11(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883904

RESUMO

Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton's duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA