RESUMO
[This corrects the article DOI: 10.3389/fphar.2021.712489.].
RESUMO
Unfractionated heparin (UFH) is commonly used as an anticoagulant in sepsis treatment and has recently been found to have non-anticoagulant effects, but underlying mechanisms remain unclear. This retrospective clinical data showed that UFH has significant protective effects in sepsis compared to low-molecular-weight heparin and enoxaparin, indicating potential benefits of its non-anticoagulant properties. Recombinant protein chip screening, surface plasmon resonance, and molecular docking data demonstrated that UFH specifically bound to the cytoplasmic Drp1 protein through its zone 2 non-anticoagulant segment. In-vitro experiments verified that UFH's specific binding to Drp1 suppressed Drp1 translocation to mitochondria following "sepsis" challenge, thereby improving mitochondrial morphology, function and metabolism in vascular endothelial cells. Consequently, UHF comprehensively protected mitochondrial quality, thus reducing vascular leakage and improving prognosis in a sepsis rat model. These findings highlight the potential of UFH as a sepsis treatment strategy targeting non-anticoagulation mechanism.
RESUMO
Aims: Seawater immersion significantly aggravated organ dysfunction following hemorrhagic shock, leading to higher mortality rate. However, the effective treatment is still unavailable in clinic. Mitochondria were involved in the onset and development of multiple organ function disorders; whether mitochondria participate in the cardiac dysfunction following seawater immersion combined with hemorrhagic shock remains poorly understood. Hence, we investigated the role and possible mechanism of mitochondria in seawater immersion combined with hemorrhage shock-induced cardiac dysfunction. Results: Mitochondrial fission protein dynamin-related protein 1 (Drp1) was activated and translocated from the cytoplasm to mitochondria in the heart following seawater immersion combined with hemorrhagic shock, leading to excessive mitochondrial fission. Excessive mitochondrial fission disrupted mitochondrial function and structure and activated mitophagy and apoptosis. At the same time, excessive mitochondrial fission resulted in disturbance of myocardial structure and hemodynamic disorders and ultimately provoked multiple organ dysfunction and high mortality. Further studies showed that the mitochondrial division inhibitor mitochondrial division inhibitor-1 can significantly reverse Drp1 mitochondrial translocation and inhibit mitochondrial fragmentation, reactive oxygen species (ROS) accumulation, mitophagy, and apoptosis and then protect circulation and vital organ functions, prolonging animal survival. Innovation: Our findings indicate that Drp1-mediated mitochondrial fission could be a novel therapeutic targets for the treatment of seawater immersion combined with hemorrhagic shock. Conclusion: Drp1 mitochondrial translocation played an important role in the cardiac dysfunction after seawater immersion combined with hemorrhage shock. Drp1-mediated excessive mitochondrial fission leads to cardiac dysfunction due to the mitochondrial structure and bioenergetics impairment.
Assuntos
Dinaminas , Dinâmica Mitocondrial , Água do Mar , Choque Hemorrágico , Animais , Masculino , Ratos , Apoptose , Modelos Animais de Doenças , Dinaminas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitofagia , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Choque Hemorrágico/metabolismo , Choque Hemorrágico/complicações , Ratos Sprague-DawleyRESUMO
ABSTRACT: In natural disasters such as earthquakes and landslides, the main problem that wounded survivors are confronted with is Crush Syndrome (CS). The aim of this study was to explore more convenient and effective early treatment measures for it.In the present study, we investigated the protective effect of fasciotomy combined with different concentration of hypertonic saline flushing with CS rats. CS model was prepared by compressing the buttocks and both lowering limbs of rats with 7.5 kg dumbbell for 4 hours. The rats were divided into 10 groups, which were normal control group, model group, incision without flushing group, 0.45%, 0.9%, 3%, 5%, 7% saline group, 3%-0.45% and 7%-0.45% saline alternating flushing group respectively. 6 hours after the treatment, the blood was sampled for measurement of the potassium, calcium, AST, ALT, Cr, Urea, myoglobin, and lactic acid content. The blood flow of the compressed tissue and kidneys, the pathological changes of the kidneys and the survival rate of 3%-0.45% saline alternating flushing group were also observed.The experimental results showed that fasciotomy alone for treatment cannot improve the presentation of CS of rats. Instead, hypertonic saline flushing significantly improved the AST, ALT, Cr, Urea indices, blood flow of muscles and kidneys. It also enormously decreased the blood K+, myoglobin, lactic acid concentration and slight increased the blood Ca2+. Among them, alternating flushing with 3%-0.45% saline had the best therapeutic effect on CS. Finally, it can be found that 3%-0.45% saline treatment regimen dramatically raised the survival rate of CS rats.All in all, this study suggests that fasciotomy combined with hypertonic saline flushing is a good therapeutic approach for CS.
RESUMO
AIM: To elucidate whether the application of the mitochondrial division inhibitor Mdivi-1 can protect organ function and prolong the treatment window for traumatic hemorrhagic shock. METHODS: Before definitive haemostasis treatment, Mdivi-1 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) was administered to uncontrolled haemorrhagic shock (UHS) model rats. Lactate Ringer's solution plus hydroxyethyl starch (130/0.4) was used as a control. The effects of Mdivi-1 on blood loss, fluid demand, survival time, vital organ function, myocardial mitochondrial structure, and mitochondrial function of the heart, liver, kidney and intestine, and oxidative stress at 1 hour after hypotensive resuscitation (50-60 mmHg) were investigated. In addition, we investigated the effect of varying doses of Mdivi-1 on the maintenance time of hypotensive resuscitation without definitive haemostasis and the beneficial effect of Mdivi-1 after prolonging the duration of hypotensive resuscitation to 2 hours. RESULTS: Compared to conventional resuscitative fluid, Mdivi-1 significantly reduced blood loss and fluid demand, improved important organ functions during hypotensive resuscitation, improved animal survival and reduced the incidence of early death. Mdivi-1 significantly alleviated oxidative stress injury, reduced mitochondrial damage and restored myocardial mitochondrial structure and mitochondrial function of the heart, liver, kidney and intestine. In addition, Mdivi-1 increased the maintenance time of hypotensive resuscitation and improved rat survival after the duration of hypotensive resuscitation was prolonged to 2 h. CONCLUSIONS: Mdivi-1 significantly prolonged the treatment window for traumatic hemorrhagic shock to 2 hours in UHS model rats. The underlying mechanism may be that Mdivi-1 inhibits excessive mitochondrial fission and oxidative stress and improves the structure and function of mitochondria.
RESUMO
Purpose: Cold seawater immersion aggravates hemorrhagic shock-induced homeostasis imbalance and organ dysfunction, leading to increased mortality. Previous studies have shown that treatments targeting oxidative stress and mitochondrial dysfunction have limited efficacy for cold seawater immersion combined with hemorrhagic shock (SIHS). Thus, the mechanisms responsible for SIHS need further investigation. Methods and Results: Data from the hemorrhagic shock transcriptome and cold seawater immersion targets used for bioinformatics analysis revealed the involvement of endoplasmic reticulum stress (ERS) in SIHS occurrence and progression. Based on these findings, the effects and possible mechanism of inhibiting ERS in SIHS rats were investigated. SIHS causes a lethal triad and impairment of vital organ function, leading to death. Compared to lactated Ringer's solution, the ERS inhibitor 4-phenylbutyric acid (PBA)significantly ameliorated acidosis and coagulopathy and protected vital organ function while prolonging survival and the golden treatment time. Through target screening and validation, 7 targets were identified for the ERS inhibitor PBA for the treatment of SIHS, among which S1PR1, MMP8 and CFTR may play more important roles. Conclusion: ERS plays a crucial role in the progression of SIHS. Inhibition of ERS caused by SIHS alleviates the lethal triad, protects organ function, and prolongs survival and the golden treatment time. The ERS inhibitor PBA may be an effective therapeutic measure for treating SIHS.
RESUMO
BACKGROUND: The purpose of this study was to investigate the effects of interleukin-1ß (IL-1ß) stimulation on the protection of macrophage derived exosomes miR-146a (M-IL-exo-146a) on sepsis induced myocardial injury (SMI) in vitro and in vivo. METHODS: Macrophage derived exosomes (M-exo) and IL-1ß stimulated macrophage exosomes (M-IL-exo) were isolated from macrophages of sepsis with or without IL-1ß. The expressions of miR-146a in M-exo and M- IL-exo were detected by fluorescence quantitative PCR. Related molecular biology technologies were used to evaluate the role and mechanism of M-exo-146a and M-IL-exo-146a on SMI and the enhancing effect of IL-1ß. RESULTS: Compared with M-exo, the expression of miR-146a in M-IL-exo was significantly increased. M-IL-exo-146a significantly alleviated SMI by decreasing the level of serum myocardial enzymes, serum and myocardial oxidative stress and cytokines, and improved myocardial mitochondrial imbalance. The mechanism responsible for IL-1ß enhancing the production of IL-M-exo miR-146a was via JNK-1/2 signal pathway. The mechanism responsible for M-exo-IL-miR-146a protecting SMI was related to miR-146a inhibiting inflammatory response and mitochondrial function via MAPK4/Drp1 signal pathway. CONCLUSIONS: This study provides a new strategy for the treatment of SMI by delivering IL-1ß stimulated macrophage derived exosomes.
RESUMO
[This corrects the article DOI: 10.3389/fimmu.2023.1181697.].
RESUMO
INTRODUCTION: Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES: We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS: The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS: The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS: PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.
Assuntos
Cardiopatias , Fenilbutiratos , Sepse , Choque Séptico , Aminoácidos/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Cardiopatias/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica , Fenilbutiratos/farmacologia , Fenilbutiratos/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Choque Séptico/complicações , Choque Séptico/tratamento farmacológico , Animais , Camundongos , Modelos Animais de Doenças , Catecol O-Metiltransferase/efeitos dos fármacos , Catecol O-Metiltransferase/metabolismo , PPAR alfa/efeitos dos fármacos , PPAR alfa/metabolismoRESUMO
CONTEXT: Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection. OBJECTIVE: To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality. MATERIALS AND METHODS: A sepsis model was established in C57BL/6 mice using cecum ligation puncture (CLP) and an in vitro model with lipopolysaccharide (LPS, 10 µg/mL)-stimulated primary intestinal microvascular endothelial cells (IMVECs) and then determine NGR1's safe dosage. Groups for each model were: in vivo-a control group, a CLP-induced sepsis group, and a CLP + NGR1 treatment group (30 mg/kg/d for 3 d); in vitro-a control group, a LPS-induced sepsis group, and a LPS + NGR1 treatment group (4 µM for 30 min). NGR1's effects on survival, intestinal function, mitochondrial quality, and mitochondrial dynamic-related protein (Drp1) were evaluated. RESULTS: Sepsis resulted in approximately 60% mortality within 7 days post-CLP, with significant reductions in intestinal microvascular perfusion and increases in vascular leakage. Severe mitochondrial quality imbalance was observed in IMVECs. NGR1 (IC50 is 854.1 µM at 30 min) targeted Drp1, inhibiting mitochondrial translocation, preventing mitochondrial fragmentation and restoring IMVEC morphology and function, thus protecting against intestinal barrier dysfunction, vascular permeability, microcirculatory flow, and improving sepsis prognosis. DISCUSSION AND CONCLUSIONS: Drp1-mediated mitochondrial quality imbalance is a potential therapeutic target for sepsis. Small molecule natural drugs like NGR1 targeting Drp1 may offer new directions for organ protection following sepsis. Future research should focus on clinical trials to evaluate NGR1's efficacy across various patient populations, potentially leading to novel treatments for sepsis.
Assuntos
Ginsenosídeos , Lipopolissacarídeos , Sepse , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Microcirculação , Camundongos Endogâmicos C57BL , Sepse/tratamento farmacológico , Sepse/metabolismoRESUMO
OBJECTIVE: To investigate whether Radix Sanguisorbae (RS, Diyu) could restore intestinal barrier function following sepsis using a cecal ligation and puncture (CLP)-induced septic rat model and lipopolysaccharide (LPS)-challenged IEC-6 cell model, respectively. METHODS: Totally 224 rats were divided into 4 groups including a control, sham, CLP and RS group according to a random number table. The rats in the control group were administrated with Ringer's lactate solution (30 mL/kg) with additional dopamine [10 µ g/(kg·min)] and given intramuscular injections of cefuroxime sodium (10 mg/kg) 12 h following CLP. The rats in the RS group were administrated with RS (10 mg/kg) through tail vein 1 h before CLP and treated with RS (10 mg/kg) 12 h following CLP. The rats in the sham group were only performed abdominal surgery without CLP. The rats in the CLP group were performed with CLP without any treatment. The other steps were same as control group. The effects of RS on intestinal barrier function, mesenteric microvessels barrier function, multi-organ function indicators, inflammatory response and 72 h survival window following sepsis were observed. In vitro, the effects of RS on LPS-challenged IEC-6 cell viability, the expressions of zona occludens-1 (ZO-1) and ferroptosis index were evaluated by cell counting kit-8, immunofluorescence and Western blot analysis. Bioinformatic tools were applied to investigate the pharmacological network of RS in sepsis to predict the active compounds and potential protein targets and pathways. RESULTS: The sepsis caused severe intestinal barrier dysfunction, multi-organ injury, lipid peroxidation accumulation, and ferroptosis in vivo. RS treatment significantly prolonged the survival time to 56 h and increased 72-h survival rate to 7/16 (43.75%). RS also improved intestinal barrier function and relieved intestinal inflammation. Moreover, RS significantly decreased lipid peroxidation and inhibited ferroptosis (P<0.05 or P<0.01). Administration of RS significantly worked better than Ringer's solution used alone. Using network pharmacology prediction, we found that ferroptosis and hypoxia inducible factor-1 (HIF-1 α) signaling pathways might be involved in RS effects on sepsis. Subsequent Western blot, ferrous iron measurements, and FerroOrange fluorescence of ferrous iron verified the network pharmacology predictions. CONCLUSION: RS improved the intestinal barrier function and alleviated intestinal injury by inhibiting ferroptosis, which was related in part to HIF-1 α/heme oxygenase-1/Fe2+ axis.
RESUMO
BACKGROUND: The purpose of this study was to investigate the effects of cardiac homing peptide (CHP) engineered bone marrow mesenchymal stem cells (BMMSc) derived exosomes (B-exo) loaded miRNA-499a-5p on doxorubicin (DOX) induced cardiotoxicity. METHODS: miRNA chip analysis was used to analyze the differences between DOX induced H9c2 cells and control group. CHP engineering was performed on BMMSc derived exosomes to obtain C-B-exo. miRNA-499a-5p mimic was introduced into C-B-exo by electroporation technology to obtain C-B-exo-miRNA-499a-5p. DOX was used to establish a model of cardiotoxicity to evaluate the effects of C-B-exo- miRNA-499a-5p in vivo and in vitro . Western blot, immunohistochemistry, immunofluorescence, and other molecular biology methods were used to evaluate the role and mechanism of C-B-exo-miRNA-499a-5p on DOX induced cardiotoxicity. RESULTS: miRNA chip analysis revealed that miRNA-499a-5p was one of the most differentially expressed miRNAs and significantly decreased in DOX induced H9c2 cells as compared to the control group. Exo-and B-exo have a double-layer membrane structure in the shape of a saucer. After engineering the CHP of B-exo, the results showed that the delivery of miRNA-499a-5p significantly increased and significantly reached the target organ (heart). The experimental results showed that C-B-exo-miRNA-499a-5p significantly improved electrocardiogram, decreased myocardial enzyme, serum and cardiac cytokines, improved cardiac pathological changes, inhibited CD38/MAPK/NF-κB signal pathway. CONCLUSIONS: In this study, C-B-exo-miRNA-499a-5p significantly improved DOX-induced cardiotoxicity via CD38/MAPK/NF-κB signal pathway, providing a new idea and method for the treatment of DOX induced cardiotoxicity.
Assuntos
Cardiotoxicidade , Doxorrubicina , Exossomos , MicroRNAs , MicroRNAs/metabolismo , MicroRNAs/genética , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Animais , Cardiotoxicidade/prevenção & controle , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Masculino , Modelos Animais de DoençasRESUMO
BACKGROUND: The purpose of this study was to prepare neutrophil membrane-engineered Panax ginseng root-derived exosomes (N-exo) and investigate the effects of N-exo microRNA (miRNA) 182-5p (N-exo-miRNA 182-5p) on acute lung injury (ALI) in sepsis. METHODS: Panax ginseng root-derived exosomes were separated by differential centrifugation. Neutrophil membrane engineering was performed on exo to obtain N-exo. miRNA182-5p was transmitted into N-exo by electroporation technology to obtain N-exo-miRNA 182-5p. LPS was used to establish an in-vivo and in-vitro model of ALI of sepsis to evaluate the anti-inflammatory effect of N-exo-miRNA 182-5p. RESULTS: The results of transmission electron microscope showed that exo was a double-layer membrane structure like a saucer. Nanoparticle size analysis showed that the average particle size of exo was 129.7 nm. Further, compared with exo, the level of miRNA182-5p was significantly increased in N-exo. The experimental results showed that N-exo-miRNA 182-5p significantly improved ALI via target regulation of NOX4/Drp-1/NLRP3 signal pathway in vivo and in vitro . CONCLUSION: In conclusion, this study prepared a novel engineered exosome (N-exo and N-exo-miRNA 182-5p significantly improved ALI in sepsis via target regulation of NOX4/Drp-1/NLRP3 signal pathway, providing new ideas and methods for treatment of ALI in sepsis.
Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Exossomos , MicroRNAs , Panax , Extratos Vegetais , Sepse , Humanos , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Transdução de Sinais , Sepse/genética , Sepse/terapia , NADPH Oxidase 4/metabolismoRESUMO
BACKGROUND: Sepsis is a life-threatening disease with a poor prognosis, and metabolic disorders play a crucial role in its development. This study aims to identify key metabolites that may be associated with the accurate diagnosis and prognosis of sepsis. METHODS: Septic patients and healthy individuals were enrolled to investigate metabolic changes using non-targeted liquid chromatography-high-resolution mass spectrometry metabolomics. Machine learning algorithms were subsequently employed to identify key differentially expressed metabolites (DEMs). Prognostic-related DEMs were then identified using univariate and multivariate Cox regression analyses. The septic rat model was established to verify the effect of phenylalanine metabolism-related gene MAOA on survival and mean arterial pressure after sepsis. RESULTS: A total of 532 DEMs were identified between healthy control and septic patients using metabolomics. The main pathways affected by these DEMs were amino acid biosynthesis, phenylalanine metabolism, tyrosine metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism. To identify sepsis diagnosis-related biomarkers, support vector machine (SVM) and random forest (RF) algorithms were employed, leading to the identification of four biomarkers. Additionally, analysis of transcriptome data from sepsis patients in the GEO database revealed a significant up-regulation of the phenylalanine metabolism-related gene MAOA in sepsis. Further investigation showed that inhibition of MAOA using the inhibitor RS-8359 reduced phenylalanine levels and improved mean arterial pressure and survival rate in septic rats. Finally, using univariate and multivariate cox regression analysis, six DEMs were identified as prognostic markers for sepsis. CONCLUSIONS: This study employed metabolomics and machine learning algorithms to identify differential metabolites that are associated with the diagnosis and prognosis of sepsis patients. Unraveling the relationship between metabolic characteristics and sepsis provides new insights into the underlying biological mechanisms, which could potentially assist in the diagnosis and treatment of sepsis. TRIAL REGISTRATION: This human study was approved by the Ethics Committee of the Research Institute of Surgery (2021-179) and was registered by the Chinese Clinical Trial Registry (Date: 09/12/2021, ChiCTR2200055772).
Assuntos
Metabolômica , Sepse , Animais , Humanos , Ratos , Biomarcadores/metabolismo , Metabolômica/métodos , Fenilalanina , Prognóstico , Sepse/diagnóstico , Sepse/metabolismoRESUMO
Excessive mitochondrial fission following ischemia and hypoxia relies on the formation of contacts between the endoplasmic reticulum and mitochondria (ER-Mito); however, the specific mechanisms behind this process remain unclear. Confocal microscopy and time course recording are used to investigate how ischemia and hypoxia affect the activation of dynamin-related protein 1 (Drp1), a protein central to mitochondrial dynamics, ER-Mito interactions, and the consequences of modifying the expression of Drp1, shroom (Shrm) 4, and inverted formin (INF) 2 on ER-Mito contact establishment. Both Drp1 activation and ER-Mito contact initiation cause excessive mitochondrial fission and dysfunction under ischemic-hypoxic conditions. The activated form of Drp1 aids in ER-Mito contact initiation by recruiting Shrm4 and promoting actin bundling between the ER and mitochondria. This process relies on the structural interplay between INF2 and scattered F-actin on the ER. This study uncovers new roles of cytoplasmic Drp1, providing valuable insights for devising strategies to manage mitochondrial imbalances in the context of ischemic-hypoxic injury.
Assuntos
Actinas , Dinaminas , Humanos , Actinas/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Isquemia , Hipóxia/metabolismoRESUMO
BACKGROUNDS: Chronic obstructive pulmonary disease (COPD) is a frequent and common disease in clinical respiratory medicine and its mechanism is unclear. The purpose of this study was to find the new biomarkers of COPD and elucidate its role in the pathogenesis of COPD. Analysis of metabolites in plasma of COPD patients were performed by ultra-high performance liquid chromatography (UPLC) and quadrupole time-of-flight mass spectrometry (TOF-MS). The differential metabolites were analyzed and identified by multivariate analysis between COPD patients and healthy people. The role and mechanisms of the differential biomarkers in COPD were verified with COPD rats, arginosuccinate synthetase 1 (ASS-l) KO mice and bronchial epithelial cells (BECs). Meanwhile, whether the differential biomarkers can be the potential treatment targets for COPD was also investigated. 85 differentials metabolites were identified between COPD patients and healthy people by metabonomic. RESULTS: L-Arginine (LA) was the most obvious differential metabolite among the 85 metabolites. Compare with healthy people, the level of LA was markedly decreased in serum of COPD patients. It was found that LA had protective effects on COPD with in vivo and in vitro experiments. Silencing Ass-1, which regulates LA metabolism, and α-methy-DL-aspartic (NHLA), an Ass-1 inhibitor, canceled the protective effect of LA on COPD. The mechanism of LA in COPD was related to the inhibition of ROS/NLRP3/NF-κB signaling pathway. It was also found that exogenous LA significantly improved COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. L-Arginine (LA) as a key metabolic marker is identified in COPD patients and has a protective effect on COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. CONCLUSION: LA may be a novel target for the treatment of COPD and also a potential substitute for treating COPD.
RESUMO
Sepsis-induced myocardial dysfunction (SIMD) is a prevalent and severe form of organ dysfunction with elusive underlying mechanisms and limited treatment options. In this study, the cecal ligation and puncture and lipopolysaccharide (LPS) were used to reproduce sepsis model in vitro and vivo. The level of voltage-dependent anion channel 2 (VDAC2) malonylation and myocardial malonyl-CoA were detected by mass spectrometry and LC-MS-based metabolomics. Role of VDAC2 malonylation on cardiomyocytes ferroptosis and treatment effect of mitochondrial targeting nano material TPP-AAV were observed. The results showed that VDAC2 lysine malonylation was significantly elevated after sepsis. In addition, the regulation of VDAC2 lysine 46 (K46) malonylation by K46E and K46Q mutation affected mitochondrial-related ferroptosis and myocardial injury. The molecular dynamic simulation and circular dichroism further demonstrated that VDAC2 malonylation altered the N-terminus structure of the VDAC2 channel, causing mitochondrial dysfunction, increasing mitochondrial ROS levels, and leading to ferroptosis. Malonyl-CoA was identified as the primary inducer of VDAC2 malonylation. Furthermore, the inhibition of malonyl-CoA using ND-630 or ACC2 knock-down significantly reduced the malonylation of VDAC2, decreased the occurrence of ferroptosis in cardiomyocytes, and alleviated SIMD. The study also found that the inhibition of VDAC2 malonylation by synthesizing mitochondria targeting nano material TPP-AAV could further alleviate ferroptosis and myocardial dysfunction following sepsis. In summary, our findings indicated that VDAC2 malonylation plays a crucial role in SIMD and that targeting VDAC2 malonylation could be a potential treatment strategy for SIMD.
Assuntos
Ferroptose , Sepse , Humanos , Canal de Ânion 2 Dependente de Voltagem/genética , Lisina , Mitocôndrias , Sepse/complicaçõesRESUMO
Background: To identify differentially expressed lipid metabolism-related genes (DE-LMRGs) responsible for immune dysfunction in sepsis. Methods: The lipid metabolism-related hub genes were screened using machine learning algorithms, and the immune cell infiltration of these hub genes were assessed by CIBERSORT and Single-sample GSEA. Next, the immune function of these hub genes at the single-cell level were validated by comparing multiregional immune landscapes between septic patients (SP) and healthy control (HC). Then, the support vector machine-recursive feature elimination (SVM-RFE) algorithm was conducted to compare the significantly altered metabolites critical to hub genes between SP and HC. Furthermore, the role of the key hub gene was verified in sepsis rats and LPS-induced cardiomyocytes, respectively. Results: A total of 508 DE-LMRGs were identified between SP and HC, and 5 hub genes relevant to lipid metabolism (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2) were screened. Then, we found an immunosuppressive microenvironment in sepsis. The role of hub genes in immune cells was further confirmed by the single-cell RNA landscape. Moreover, significantly altered metabolites were mainly enriched in lipid metabolism-related signaling pathways and were associated with MAPK14. Finally, inhibiting MAPK14 decreased the levels of inflammatory cytokines and improved the survival and myocardial injury of sepsis. Conclusion: The lipid metabolism-related hub genes may have great potential in prognosis prediction and precise treatment for sepsis patients.
Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Sepse , Animais , Ratos , Metabolômica , Sepse/genética , Imunidade , Análise de Sequência de RNA , LipídeosRESUMO
The prevalence and severity of high-altitude sickness increases with increasing altitude. Prevention of hypoxia caused by high-altitude sickness is an urgent problem. As a novel oxygen-carrying fluid, modified hemoglobin can carry oxygen in a full oxygen partial pressure environment and release oxygen in a low oxygen partial pressure environment. It is unclear whether modified hemoglobin can improve hypoxic injury on a plateau. Using hypobaric chamber rabbit (5000 m) and plateau goat (3600 m) models, general behavioral scores and vital signs, hemodynamic, vital organ functions, and blood gas are measured. The results show that the general behavioral scores and vital signs decrease significantly in the hypobaric chamber or plateau, and the modified hemoglobin can effectively improve the general behavioral scores and vital signs in rabbits and goats, and reduce the degree of damage to vital organs. Further studies reveal that arterial partial pressure of oxygen (PaO2 ) and arterial oxygen saturation (SaO2 ) on the plateau decrease rapidly, and the modified hemoglobin could increase PaO2 and SaO2 ; thus, increasing the oxygen-carrying capacity. Moreover, modified hemoglobin has few side effects on hemodynamics and kidney injury. These results indicate that modified hemoglobin has a protective effect against high-altitude sickness.