Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37756171

RESUMO

Graph clustering, which learns the node representations for effective cluster assignments, is a fundamental yet challenging task in data analysis and has received considerable attention accompanied by graph neural networks (GNNs) in recent years. However, most existing methods overlook the inherent relational information among the nonindependent and nonidentically distributed nodes in a graph. Due to the lack of exploration of relational attributes, the semantic information of the graph-structured data fails to be fully exploited which leads to poor clustering performance. In this article, we propose a novel self-supervised deep graph clustering method named relational redundancy-free graph clustering (R 2 FGC) to tackle the problem. It extracts the attribute-and structure-level relational information from both global and local views based on an autoencoder (AE) and a graph AE (GAE). To obtain effective representations of the semantic information, we preserve the consistent relationship among augmented nodes, whereas the redundant relationship is further reduced for learning discriminative embeddings. In addition, a simple yet valid strategy is used to alleviate the oversmoothing issue. Extensive experiments are performed on widely used benchmark datasets to validate the superiority of our R 2 FGC over state-of-the-art baselines. Our codes are available at https://github.com/yisiyu95/R2FGC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35594237

RESUMO

Graph classification plays an important role in a wide range of applications from biological prediction to social analysis. Traditional graph classification models built on graph kernels are hampered by the challenge of poor generalization as they are heavily dependent on the dedicated design of handcrafted features. Recently, graph neural networks (GNNs) become a new class of tools for analyzing graph data and have achieved promising performance. However, it is necessary to collect a large number of labeled graph data for training an accurate GNN, which is often unaffordable in real-world applications. Therefore, it is an open question to build GNNs under the condition of few-shot learning where only a few labeled graphs are available. In this article, we introduce a new Structure-aware Prototypical Neural Process (SPNP for short) for a few-shot graph classification. Specifically, at the encoding stage, SPNP first employs GNNs to capture graph structure information. Then, SPNP incorporates such structural priors into the latent path and the deterministic path for representing stochastic processes. At the decoding stage, SPNP uses a new prototypical decoder to define a metric space where unseen graphs can be predicted effectively. The proposed decoder, which contains a self-attention mechanism to learn the intraclass dependence between graphs, can enhance the class-level representations, especially for new classes. Furthermore, benefited from such a flexible encoding-decoding architecture, SPNP can directly map the context samples to a predictive distribution without any complicated operations used in previous methods. Extensive experiments demonstrate that SPNP achieves consistent and significant improvements over state-of-the-art methods. Further discussions are provided toward model efficiency and more detailed analysis.

3.
AMIA Annu Symp Proc ; 2020: 763-772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33936451

RESUMO

The mortality prediction of diverse rare diseases using electronic health record (EHR) data is a crucial task for intelligent healthcare. However, data insufficiency and the clinical diversity of rare diseases make it hard for deep learning models to be trained. Mortality prediction for these patients with different diseases can be viewed as a multi-task learning problem with insufficient data but a large number of tasks. On the other hand, insufficient training data makes it difficult to train task-specific modules in multi-task learning models. To address the challenges of data insufficiency and task diversity, we propose an initialization-sharing multi-task learning method (Ada-SiT). Ada-Sit can learn the parameter initialization and dynamically measure the tasks' similarities, used for fast adaptation. We use Ada-SiT to train long short-term memory networks (LSTM) based prediction models on longitudinal EHR data. The experimental results demonstrate that the proposed model is effective for mortality prediction of diverse rare diseases.


Assuntos
Aprendizado Profundo , Doenças Raras/mortalidade , Registros Eletrônicos de Saúde , Humanos
4.
AMIA Annu Symp Proc ; 2019: 597-606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32308854

RESUMO

Clinical outcome prediction based on Electronic Health Record (EHR) helps enable early interventions for high-risk patients, and is thus a central task for smart healthcare. Conventional deep sequential models fail to capture the rich temporal patterns encoded in the long and irregular clinical event sequences in EHR. We make the observation that clinical events at a long time scale exhibit strong temporal patterns, while events within a short time period tend to be disordered co-occurrence. We thus propose differentiated mechanisms to model clinical events at different time scales. Our model learns hierarchical representations of event sequences, to adaptively distinguish between short-range and long-range events, and accurately capture their core temporal dependencies. Experimental results on real clinical data show that our model greatly improves over previous state-of-the-art models, achieving AUC scores of 0.94 and 0.90 for predicting death and ICU admission, respectively. Our model also successfully identifies important events for different clinical outcome prediction tasks.


Assuntos
Registros Eletrônicos de Saúde , Modelos Teóricos , Avaliação de Resultados em Cuidados de Saúde/métodos , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA