Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 133137, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901508

RESUMO

Polygonatum sibiricum polysaccharides (PSP), the primary constituent of Polygonatum sibiricum, have been shown to exhibit a wide range of pharmacological effects, but their impact on osteoarthritis (OA) remains unclear. The objective of this study was to investigate the protective effects of PSP against OA and to elucidate its underlying molecular mechanism. In our in vitro experiments, PSP not only inhibited the IL-1ß-induced inflammatory responses and the nuclear factor kappa-B (NF-κB) signaling pathway in chondrocytes but also regulated the cartilage matrix metabolism. In addition, we detected 394 significantly differentially expressed genes through RNA-seq analysis on PSP-intervened chondrocytes, and the toll-like receptor 2 (TLR2) was identified as the most important feature by functional network analysis and qRT-PCR. It was also revealed that PSP treatment significantly reversed the IL-1-induced up-regulation of TLR2 expression in chondrocytes, while TLR2 overexpression partially inhibited the regulatory effects of PSP on inflammation, NF-κB signaling pathway and matrix metabolism. In our in vivo experiments, PSP treatment alleviated the development of destabilization of medial meniscus (DMM)-induced OA in mouse knee joints, inhibited the DMM-induced activation of the TLR2/NF-κB signaling pathway in mouse knee joint cartilage, and reduced the serum levels of inflammatory cytokines. In conclusion, PSP exerts its anti-inflammatory, matrix synthesis-promoting and matrix catabolism-suppressing effects in knee OA by inhibiting the TLR2/NF-κB signaling pathway, suggesting that PSP may be potentially targeted as a novel all-natural, low-toxicity drug for OA prevention and treatment.


Assuntos
Condrócitos , NF-kappa B , Osteoartrite do Joelho , Polygonatum , Polissacarídeos , Transdução de Sinais , Receptor 2 Toll-Like , Receptor 2 Toll-Like/metabolismo , Animais , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/prevenção & controle , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/induzido quimicamente , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Polygonatum/química , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Animais de Doenças
2.
J Exp Clin Cancer Res ; 43(1): 149, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778379

RESUMO

BACKGROUND: Prostate cancer (PCa) incidence and mortality rates are rising. Our previous research has shown that the combination of icariin (ICA) and curcumol (CUR) induced autophagy and ferroptosis in PCa cells, and altered lipid metabolism. We aimed to further explore the effects of the combination of ICA and CUR on gut microbiota, metabolism, and immunity in PCa. METHODS: A mouse subcutaneous RM-1 cell tumor model was established. 16 S rRNA sequencing was performed to detect changes in fecal gut microbiota. SCFAs in mouse feces, and the effect of ICA-CUR on T-cell immunity, IGFBP2, and DNMT1 were examined. Fecal microbiota transplantation (FMT) was conducted to explore the mechanism of ICA-CUR. Si-IGFBP2 and si/oe-DNMT1 were transfected into RM-1 and DU145 cells, and the cells were treated with ICA-CUR to investigate the mechanism of ICA-CUR on PCa development. RESULTS: After treatment with ICA-CUR, there was a decrease in tumor volume and weight, accompanied by changes in gut microbiota. ICA-CUR affected SCFAs and DNMT1/IGFBP2/EGFR/STAT3/PD-L1 pathway. ICA-CUR increased the positive rates of CD3+CD8+IFN-γ, CD3+CD8+Ki67 cells, and the levels of IFN-γ and IFN-α in the serum. After FMT (with donors from the ICA-CUR group), tumor volume and weight were decreased. SCFAs promote tumor development and the expression of IGFBP2. In vitro, DNMT1/IGFBP2 promotes cell migration and proliferation. ICA-CUR inhibits the expression of DNMT1/IGFBP2. CONCLUSIONS: ICA-CUR mediates the interaction between gut microbiota and the DNMT1/IGFBP2 axis to inhibit the progression of PCa by regulating immune response and metabolism, suggesting a potential therapeutic strategy for PCa.


Assuntos
Linfócitos T CD8-Positivos , DNA (Citosina-5-)-Metiltransferase 1 , Microbioma Gastrointestinal , Neoplasias da Próstata , Animais , Camundongos , Masculino , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Humanos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Modelos Animais de Doenças
3.
Laryngoscope ; 134(9): 4052-4059, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38742543

RESUMO

OBJECTIVE: Investigate the impact of Surgery-induced stress (SIS) on the normal airway repair process after airway reconstruction using a mouse microsurgery model, mass spectrometry (MS), and bioinformatic analysis. METHODS: Tracheal tissue from non-surgical (N = 3) and syngeneic tracheal grafts at 3 months post-replacement (N = 3) were assessed using mass spectrometry. Statistical analysis was done using MASCOT via Proteome Discoverer™. Proteins were categorized into total, dysregulated, suppressed, and evoked proteins in response to SIS. Dysregulated proteins were identified using cut-off values of -1 1 and t-test (p value <0.05). Enriched pathways were determined using STRING and Metascape. RESULTS: At the three-month post-operation mark, we noted a significant increase in submucosal cellular infiltration (14343 ± 1286 cells/mm2, p = 0.0003), despite reduced overall thickness (30 ± 3 µm, p = 0.01), compared to Native (4578 ± 723 cells/mm2; 42 ± 6 µm). Matrisome composition remained preserved, with proteomic analysis identifying 193 commonly abundant proteins, encompassing 7.2% collagens, 34.2% Extracellular matrix (ECM) glycoproteins, 6.2% proteoglycans, 33.2% ECM regulators, 14.5% Extracellular matrix-affiliated, and 4.7% secreted factors. Additionally, our analysis unveiled a unique proteomic signature of 217 "Surgery-evoked proteins" associated with SIS, revealing intricate connections among neutrophils, ECM remodeling, and vascularization through matrix metalloproteinase-9 interaction. CONCLUSIONS: Our study demonstrated the impact of SIS on the extracellular matrix, particularly MMP9, after airway reconstruction. The novel identification of MMP9 prompts further investigation into its potential role in repair. LEVEL OF EVIDENCE: NA Laryngoscope, 134:4052-4059, 2024.


Assuntos
Proteômica , Traqueia , Animais , Traqueia/metabolismo , Traqueia/cirurgia , Camundongos , Proteômica/métodos , Espectrometria de Massas , Estresse Fisiológico/fisiologia , Microcirurgia/métodos , Camundongos Endogâmicos C57BL , Proteoma/análise , Proteoma/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo
4.
Laryngoscope Investig Otolaryngol ; 9(2): e1247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618643

RESUMO

Objective: Bioengineered tracheal grafts are a potential solution for the repair of long-segment tracheal defects. A recent advancement is partially decellularized tracheal grafts (PDTGs) which enable regeneration of host epithelium and retain viable donor chondrocytes for hypothesized benefits to mechanical properties. We propose a novel and tunable 3D-printed bioreactor for creating large animal PDTG that brings this technology closer to the bedside. Methods: Conventional agitated immersion with surfactant and enzymatic activity was used to partially decellularize New Zealand white rabbit (Oryctolagus cuniculus) tracheal segments (n = 3). In parallel, tracheal segments (n = 3) were decellularized in the bioreactor with continuous extraluminal flow of medium and alternating intraluminal flow of surfactant and medium. Unprocessed tracheal segments (n = 3) were also collected as a control. The grafts were assessed using the H&E stain, tissue DNA content, live/dead assay, Masson's trichrome stain, and mechanical testing. Results: Conventional processing required 10 h to achieve decellularization of the epithelium and submucosa with poor chondrocyte viability and mechanical strength. Using the bioreactor reduced processing time by 6 h and resulted in chondrocyte viability and mechanical strength similar to that of native trachea. Conclusion: Large animal PDTG created using our novel 3D printed bioreactor is a promising approach to efficiently produce tracheal grafts. The bioreactor offers flexibility and adjustability favorable to creating PDTG for clinical research and use. Future research includes optimizing flow conditions and transplantation to assess post-implant regeneration and mechanical properties. Level of Evidence: NA.

5.
Clin Cosmet Investig Dermatol ; 17: 731-743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550403

RESUMO

Background: Immune-mediated inflammation and oxidative stress play pivotal roles in Henoch-Schonlein purpura (HSP), primarily through the TLR4/MyD88/NF-κB pathway. Proanthocyanidins (PCs) exert anti-inflammatory and antioxidant effects by regulating some signals like TLR4/MyD88/NF-κB. Previous research uncovered that PCs could alleviate purpura-like lesions and pathological changes on rats likely through attenuating inflammation and OS damage. The mechanism of PCs on HSP deserves further investigation. Objective: To clarify the potential mechanism of PCs to HUVECs induced by the serum of HSP patients. Methods: HUVECs were randomly divided into blank, control, model, and low-, medium-, and high-concentration PCs group. Then, 25% HSP serum was assigned to the latter four groups, while 25% serum from healthy subjects to control group and serum-free culture medium to blank one. The last three groups separately received different concentrations of PCs. In addition, TAK-242, a TLR4 inhibitor, was applied to investigate the effect of TLR4-related signals in PCs against HSP serum-induced damage. Finally, inflammatory and OS-related parameters were detected by using cytological/molecular-biological techniques. Results: Treated with HSP serum later, the levels of immuno-inflammatory and oxidative indicators obviously went up (P < 0.05), and those of antioxidants remarkably went down (P < 0.05). PCs, however, reversed above phenomena (P < 0.05). Moreover, TLR4, MyD88 and NF-κB proteins/genes highly expressed in the model group; but significantly fell off in the presence of PCs (P < 0.05). Amazingly, all of above indicators showed no significant difference among the groups of different PCs concentrations (P > 0.05). These alterations likewise occurred after TAK-242 pretreatment with or without PCs, ie a notable drop of TLR4, MyD88 and NF-κB appeared in TAK-242 presence, few differences existing when compared to the PCs groups. Conclusion: PCs effectively protect HUVECs from inflammatory and OS damage provoked by HSP serum via blocking TLR4/MyD88/NF-κB signals.

6.
J Ethnopharmacol ; 326: 117972, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38403005

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guhan Yangsheng Jing (GHYSJ) is a traditional Chinese patent medicine, that has the function of nourishing the kidney and replenishing the essence, invigorating the brain and calming the mind. It is often used to treat dizziness, memory loss, sleep disorders, fatigue, and weakness, etc. However, its mechanism for improving sleep has not yet been determined. AIM OF THE STUDY: This study aims to explore the effects of GHYSJ on Sleep Deprivation (SD)-induced hippocampal neuronal pyroptotic injury, learning and cognitive abilities, and sleep quality in mice. METHODS: In this study, a PCPA-induced SD mouse model was established. We assessed the influence of GHYSJ on sleep quality and mood by using the pentobarbital-induced sleep test (PIST) and sucrose preference test (SPT). The pharmacological effects of GHYSJ on learning and memory impairment were evaluated by the Morris Water Maze (MWM) and Open Field Test (OFT). Pathological changes in the hippocampal tissue of the SD rats were observed via HE staining and Nissl staining. The severity of neuronal damage was evaluated by detecting the expression of the neuronal marker Microtubule-associated protein 2 (MAP2), via immunohistochemistry and immunofluorescence. Furthermore, the levels of neurotransmitter 5-hydroxytryptophan (5-HTP), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), and Glutamic acid (Glu) in hippocampal tissues, as well as the expression of inflammatory factors Interleukin-1ß (IL-1ß) and Interleukin-18 (IL-18) in serum, were determined by ELISA. The expressions of mRNA and protein NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Cysteinyl aspartate specific proteinase1 (Caspase1), High mobility group box-1 protein (HMGB1) and Apoptosis-associated speck-like protein containing CARD (ASC) related to the cellular ferroptosis pathway were tested and analyzed by RT-PCR and WB respectively. RESULTS: PCPA significantly diminishes the sleep span of experimental animals by expediting the expenditure of 5-HT, consequently establishing an essentially direct SD model. The intervention of GHYSJ displays remarkable efficacy in mitigating insomnia symptoms, encompassing difficulties in initiating sleep and insufficient sleep duration. Likewise, it ameliorates memory function impairments induced by sleep deprivation, along with symptoms such as fatigue and depletion of vitality. GHYSJ exerts a protective influence on hippocampal neurons facilitated by inhibiting the down regulation of MAP2 and maintaining the equilibrium of neurotransmitters (5-HTP, 5-HT, GABA, and Glu). It diminishes the expression of intracellular pyroptosis-associated inflammatory factors (IL-1ß and IL-18) and curbs the activation of the NLRP3/Caspase1/GSDMD pyroptosis-related signaling pathways, thereby alleviating the damage caused by hippocampal neuronal pyroptosis.


Assuntos
Ácido Aspártico , Interleucina-18 , Camundongos , Animais , Ratos , Privação do Sono , Proteína 3 que Contém Domínio de Pirina da Família NLR , 5-Hidroxitriptofano , Serotonina , Sono , Transdução de Sinais , Neurônios , Transtornos da Memória/tratamento farmacológico , Ácido gama-Aminobutírico , Caspase 1
7.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6702-6710, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212030

RESUMO

This study aims to explore the influence of Polygonati Rhizoma on the pyroptosis in the rat model of diabetic macroangiopathy via the NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate specific proteinase-1(caspase-1)/gasdermin D(GSDMD) pathway. The rat model of diabetes was established by intraperitoneal injection of streptozotocin(STZ) combined with a high-fat, high-sugar diet. The blood glucose meter, fully automated biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, and Western blot were employed to measure blood glucose levels, lipid levels, vascular thickness, inflammatory cytokine levels, and expression levels of pyroptosis-related proteins. The mechanism of pharmacological interventions against the injury in the context of diabetes was thus explored. The results demonstrated the successful establishment of the model of diabetes. Compared with the control group, the model group showed elevated levels of fasting blood glucose, total cholesterol(TC), triglycerides(TG) and low-density lipoprotein cholesterol(LDL-c), lowered level of high-density lipoprotein cholesterol(HDL-c), thickened vascular intima, and elevated serum and aorta levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß) and interleukin-18(IL-18). Moreover, the model group showed increased NLRP3 inflammasomes and up-regulated levels of caspase-1 and GSDMD in aortic vascular cells. Polygonati Rhizoma intervention reduced blood glucose and lipid levels, inhibited vascular thickening, lowered the levels of TNF-α, IL-1ß, IL-18 in the serum and aorta, attenuated NLRP3 inflammasome expression, and down-regulated the expression levels of caspase-1 and GSDMD, compared with the model group. In summary, Polygonati Rhizoma can slow down the progression of diabetic macroangiopathy by inhibiting pyroptosis and alleviating local vascular inflammation.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Doenças Vasculares , Animais , Ratos , Caspase 1/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-18 , Glicemia , Piroptose , Fator de Necrose Tumoral alfa , Inflamassomos , Colesterol , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA