Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36016392

RESUMO

Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the plant host, or the impact on viruses on their pathogenic bacterial hosts. Few studies have investigated the co-evolution of bacterial pathogens with their host plants as well as with their bacterial viruses. In this work, we aimed to identify the genes that were associated with both phage sensitivity and host pathogenicity of the bacterium Xanthomonas oryzae pv. oryzae (Xoo), which is the most important bacterial rice pathogen. Using the Tn5 transposon mutation technology, we created a library of Xoo strain C2 comprising 4524 mutants, which were subsequently tested for phage infectability. The phage infection tests showed that less than 1% of the mutants (n = 36) were resistant to phage infection, which was attributed to the Tn5 insertion in 19 genes. Interestingly, three out of 19 genes that conveyed resistance to the phage resulted in reduced pathogenicity to rice seedlings compared to the wild type. We identified three genes involved in both phage infection and bacterial virulence, which were studied by knockout mutants and complementation experiments. All of the three knockout mutants were resistant to infection by phage X2, while the complemented strains restored the susceptibility to the bacterial virus. Surprisingly, the genes are also essential for pathogenicity, which we confirmed by single knockout mutants corresponding to the Tn5 mutants. All three genes are involved in lipopolysaccharide synthesis, thus changing the cell envelope surface molecule composition. Our work shows a possible balance in terms of the connection between bacterial virulence and phage resistance, supporting the deployment of phages for the biocontrol of plant pathogens.


Assuntos
Bacteriófagos , Oryza , Xanthomonas , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Xanthomonas/genética
2.
NanoImpact ; 21: 100281, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559773

RESUMO

Pestalotiopsis versicolor is a most destructive fungal pathogen that causes twig blight disease in bayberry. For the last seven years, it is difficult to control this pathogen due to its latent infestation mode and its control through chemical fungicides is environmentally corrosive in addition to being costly. In this study, we reported the fungicidal potential of biologically synthesized zirconium oxide nanoparticles (ZrONPs) against P. versicolor for the first time. The strain used for green synthesis of ZrONPs was taxonomically identified as Enterobacter sp. strain RNT10. The production of ZrONPs in reaction mixture was confirmed through UV-vis spectroscopy analysis. Moreover, FTIR, XRD, SEM and TEM analysis showed the presence of capping proteins and crystalline nature of spherical shaped ZrONPs with particle size ranging from 33 to 75 nm. EDX spectra revealed an elemental profile of ZrONPs comprising of Zr (54.40%) and oxygen (43.49%). Biogenic ZrONPs showed substantial antifungal inhibition zones (25.18 ± 1.52 mm) at 20 µg mL-1 concentration against P. versicolor strain XJ27. Moreover, the treatment of 20 µg mL-1 ZrONPs significantly inhibited twig blight in detached leaf assay. Furthermore, imaging through SEM and TEM showed the adverse effects of ZrONPs against P. versicolor in terms of extracellular leakage of DNA and proteins. Overall, this study suggested that biogenic ZrONPs could substitute chemically synthesized antifungal agents with the specific application towards control of twig blight disease in bayberry.


Assuntos
Myrica , Nanopartículas , Antifúngicos/farmacologia , Enterobacter , Nanopartículas/química , Pestalotiopsis , Zircônio
3.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086640

RESUMO

Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases, resulting in significant yield losses in rice. The extensive use of chemical antibacterial agents has led to an increase the environmental toxicity. Nanotechnology products are being developed as a promising alternative to control plant disease with low environmental impact. In the present study, we investigated the antibacterial activity of biosynthesized chitosan nanoparticles (CSNPs) and zinc oxide nanoparticles (ZnONPs) against rice pathogen Xoo. The formation of CSNPs and ZnONPs in the reaction mixture was confirmed by using UV-vis spectroscopy at 300-550 nm. Moreover, CSNPs and ZnONPs with strong antibacterial activity against Xoo were further characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Compared with the corresponding chitosan and ZnO alone, CSNPs and ZnONPs showed greater inhibition in the growth of Xoo, which may be mainly attributed to the reduction in biofilm formation and swimming, cell membrane damage, reactive oxygen species production, and apoptosis of bacterial cells. Overall, this study revealed that the two biosynthesized nanoparticles, particularly CSNPs, are a promising alternative to control rice bacterial disease.


Assuntos
Quitosana/farmacologia , Nanopartículas/química , Xanthomonas/efeitos dos fármacos , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/síntese química , Quitosana/química , Humanos , Oryza/microbiologia , Xanthomonas/patogenicidade , Óxido de Zinco/síntese química , Óxido de Zinco/química
4.
Pathogens ; 9(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992669

RESUMO

Rhizoctonia solani is the causative agent of rice sheath blight disease. In a previous study, we found that the growth of R. solani was inhibited by Burkholderia seminalis strain R456. Therefore, the present study was conducted to identify the genes involved in the antifungal activity of B. seminalis strain R456 by using a Tn5 transposon mutation method. Firstly, we constructed a random insertion transposon library of 997 mutants, out of which 11 mutants showed the defective antifungal activity against R. solani. Furthermore, the 10 antagonism-related genes were successfully identified based on analysis of the Tn5 transposon insertion site. Indeed, this result indicated that three mutants were inserted on an indigenous plasmid in which the same insertion site was observed in two mutants. In addition, the remaining eight mutants were inserted on different genes encoding glycosyl transferase, histone H1, nonribosomal peptide synthetase, methyltransferase, MnmG, sulfate export transporter, catalase/peroxidase HPI and CysD, respectively. Compared to the wild type, the 11 mutants showed a differential effect in bacteriological characteristics such as cell growth, biofilm formation and response to H2O2 stress, revealing the complexity of action mode of these antagonism-related genes. However, a significant reduction of cell motility was observed in the 11 mutants compared to the wild type. Therefore, it can be inferred that the antifungal mechanism of the 10 above-mentioned genes may be, at least partially, due to the weakness of cell motility. Overall, the result of this study will be helpful for us to understand the biocontrol mechanism of this bacterium.

5.
Diabetologia ; 61(11): 2333-2343, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30094467

RESUMO

AIMS/HYPOTHESIS: Innate immune effectors interact with the environment to contribute to the pathogenesis of the autoimmune disease, type 1 diabetes. Although recent studies have suggested that innate immune Toll-like receptors (TLRs) are involved in tissue development, little is known about the role of TLRs in tissue development, compared with autoimmunity. We aimed to fill the knowledge gap by investigating the role of TLR9 in the development and function of islet beta cells in type 1 diabetes, using NOD mice. METHODS: We generated Tlr9-/- NOD mice and examined them for type 1 diabetes development and beta cell function, including insulin secretion and glucose tolerance. We assessed islet and beta cell number and characterised CD140a expression on beta cells by flow cytometry. We also tested beta cell function in Tlr9-/- C57BL/6 mice. Finally, we used TLR9 antagonists to block TLR9 signalling in wild-type NOD mice to verify the role of TLR9 in beta cell development and function. RESULTS: TLR9 deficiency promoted pancreatic islet development and beta cell differentiation, leading to enhanced glucose tolerance, improved insulin sensitivity and enhanced first-phase insulin secretory response. This was, in part, mediated by upregulation of CD140a (also known as platelet-derived growth factor receptor-α [PDGFRα]). In the absence of TLR9, induced by either genetic targeting or treatment with TLR9 antagonists, which had similar effects on ontogenesis and function of beta cells, NOD mice were protected from diabetes. CONCLUSIONS/INTERPRETATION: Our study links TLR9 and the CD140a pathway in regulating islet beta cell development and function and indicates a potential therapeutic target for diabetes prevention and/or treatment.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Cloroquina/farmacologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Citometria de Fluxo , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Mutantes , Oligodesoxirribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/genética
6.
J Mol Med (Berl) ; 88(4): 351-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20016875

RESUMO

To investigate whether the local production of glucagon-like peptide-1 (GLP-1) in the intestine can differentiate intestinal stem/progenitor cells into insulin-producing cells, we intra-intestinally injected a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) into diabetic mice. There were no significant differences in body weight or food intake between rAd-GLP-1- and rAd-betaGAL-treated control mice. rAd-GLP-1-treated mice showed intestinal insulin mRNA expression, insulin- and glucagon-positive cells in the intestine, and significantly increased serum insulin, but not glucagon. rAd-GLP-1 injection significantly reduced blood glucose levels and improved glucose tolerance compared with controls. Expression of transcription factors related to beta cell differentiation, neurogenin 3 (ngn3) and neurogenin differentiation factor (NeuroD), was detected in the intestine at 2 weeks after rAd-GLP-1 injection. We suggest that expression of GLP-1 in the intestine by intra-intestinal delivery of rAd-GLP-1 may induce differentiation of intestinal stem/progenitor cells into insulin-producing cells, mediated by ngn3 and NeuroD expression, contributing to lowered blood glucose levels in diabetic mice.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Hiperglicemia/terapia , Células Secretoras de Insulina/citologia , Adenoviridae/genética , Animais , Diferenciação Celular , Modelos Animais de Doenças , Intestinos/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Fatores de Tempo
7.
Diabetes ; 56(6): 1671-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17369525

RESUMO

Long-term treatment with glucagon-like peptide (GLP)-1 or its analog can improve insulin sensitivity. However, continuous administration is required due to its short half-life. We hypothesized that continuous production of therapeutic levels of GLP-1 in vivo by a gene therapy strategy may remit hyperglycemia and maintain prolonged normoglycemia. We produced a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) under the cytomegalovirus promoter, intravenously injected it into diabetic ob/ob mice, and investigated the effect of this treatment on remission of diabetes, as well as the mechanisms involved. rAd-GLP-1-treated diabetic ob/ob mice became normoglycemic 4 days after treatment, remained normoglycemic over 60 days, and had reduced body weight gain. Glucose tolerance tests found that exogenous glucose was cleared normally. rAd-GLP-1-treated diabetic ob/ob mice showed improved beta-cell function, evidenced by glucose-responsive insulin release, and increased insulin sensitivity, evidenced by improved insulin tolerance and increased insulin-stimulated glucose uptake in adipocytes. rAd-GLP-1 treatment increased basal levels of insulin receptor substrate (IRS)-1 in the liver and activation of IRS-1 and protein kinase C by insulin in liver and muscle; increased Akt activation was only observed in muscle. rAd-GLP-1 treatment reduced hepatic glucose production and hepatic expression of phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and fatty acid synthase in ob/ob mice. Taken together, these results show that a single administration of rAd-GLP-1 results in the long-term remission of diabetes in ob/ob mice by improving insulin sensitivity through restoration of insulin signaling and reducing hepatic gluconeogenesis.


Assuntos
Diabetes Mellitus Experimental/terapia , Terapia Genética , Peptídeo 1 Semelhante ao Glucagon/genética , Insulina/fisiologia , Fígado/metabolismo , Animais , Gluconeogênese , Teste de Tolerância a Glucose , Camundongos , Camundongos Obesos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Mol Ther ; 15(1): 86-93, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17164779

RESUMO

Type 1 diabetes results from insulin deficiency caused by destruction of pancreatic beta cells. Glucagon-like peptide (GLP)-1 stimulates beta cell growth and differentiation. To determine whether continuous expression of GLP-1 in vivo can regenerate beta cells and remit type 1 diabetes in mice for a prolonged time, we constructed an adenoviral vector containing the cytomegalovirus promoter/enhancer and albumin leader sequence followed by GLP-1 cDNA (rAd-GLP-1). A single administration of rAd-GLP-1 via the tail vein into streptozotocin (STZ)-induced diabetic non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice resulted in remission of diabetes within 10 days; normoglycemia remained until the experiment was terminated. The number of insulin-positive cells in the pancreas and insulin secretion significantly increased in rAd-GLP-1-treated mice compared with STZ-induced diabetic mice treated with rAd-beta-galactosidase. Glucose tolerance tests in mice that achieved normoglycemia after treatment with rAd-GLP-1 showed that the kinetics of glucose clearance was similar to normal NOD/SCID mice. Treatment of autoimmune diabetic mice with rAd-GLP-1 restored normoglycemia, which was maintained for 1 year when mice were also treated with an immunoregulator to halt the autoimmune response to beta cells. We suggest that regeneration of insulin-producing cells by GLP-1 gene therapy may be a potential method for prolonged control of type 1 diabetes in humans.


Assuntos
Adenoviridae/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/prevenção & controle , Expressão Gênica/genética , Vetores Genéticos/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Terapia Genética , Peptídeo 1 Semelhante ao Glucagon/genética , Humanos , Imuno-Histoquímica , Insulina/sangue , Insulina/genética , Camundongos , RNA Mensageiro/genética , Estreptozocina/farmacologia
9.
Mol Ther ; 15(1): 86-93, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28182934

RESUMO

Type 1 diabetes results from insulin deficiency caused by destruction of pancreatic ß cells. Glucagon-like peptide (GLP)-1 stimulates ß cell growth and differentiation. To determine whether continuous expression of GLP-1 in vivo can regenerate ß cells and remit type 1 diabetes in mice for a prolonged time, we constructed an adenoviral vector containing the cytomegalovirus promoter/enhancer and albumin leader sequence followed by GLP-1 cDNA (rAd-GLP-1). A single administration of rAd-GLP-1 via the tail vein into streptozotocin (STZ)-induced diabetic non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice resulted in remission of diabetes within 10 days; normoglycemia remained until the experiment was terminated. The number of insulin-positive cells in the pancreas and insulin secretion significantly increased in rAd-GLP-1-treated mice compared with STZ-induced diabetic mice treated with rAd-ß-galactosidase. Glucose tolerance tests in mice that achieved normoglycemia after treatment with rAd-GLP-1 showed that the kinetics of glucose clearance was similar to normal NOD/SCID mice. Treatment of autoimmune diabetic mice with rAd-GLP-1 restored normoglycemia, which was maintained for 1 year when mice were also treated with an immunoregulator to halt the autoimmune response to ß cells. We suggest that regeneration of insulin-producing cells by GLP-1 gene therapy may be a potential method for prolonged control of type 1 diabetes in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA