Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
iScience ; 27(6): 109829, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770133

RESUMO

Homoharringtonine (HHT), an alkaloid isolated from Cephalotaxus, is an effective anti-leukemia agent and exhibits inhibitory effects in various solid tumors. However, the impacts of HHT treatment on thyroid cancer (TC) remain unclear. Our findings demonstrated that HHT exhibited remarkable anti-TC activity that involved inhibiting cell proliferation, invasion, and migration, as well as inducing apoptosis. Proteomics analysis revealed that the expression of the tissue inhibitor of metalloproteinase 1 (TIMP1) was downregulated in TC cells after HHT treatment. TIMP1 overexpression promoted TC progression and partially reversed the anti-TC effects of HHT, while TIMP1 downregulation inhibited TC progression and enhanced the anti-TC effects of HHT. Furthermore, TIMP1 re-expression attenuated the enhancement of anti-TC effects of HHT induced by TIMP1 knockdown. Mechanistically, HHT exerted anti-TC effects by downregulating TIMP1 expression and then inactivating the FAK/PI3K/AKT signaling pathway. Taken together, our study demonstrated that HHT could inhibit TC progression by inhibiting the TIMP1/FAK/PI3K/AKT signaling pathway.

2.
BMC Plant Biol ; 24(1): 432, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773389

RESUMO

The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Salino , Gossypium/genética , Gossypium/fisiologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Genes de Plantas , Tolerância ao Sal/genética
3.
Talanta ; 275: 126101, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38631268

RESUMO

Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S. typhimurium. In our research, two models of multi-Apts were designed. First, a monovalent activatable aptamer (mono-Apt) was constructed by fluorescence resonance energy transfer (FRET) with an S. typhimurium aptamer and its complementary chain of BHQ1. Next, the DNA scaffold was obtained by HCR and RCA, and the multi-Apts were obtained by self-assembly of the mono-Apt with a DNA scaffold. In model I, when target was presented, the complementary chain BHQ1 was released due to the binding of multi-Apts to the target and was subsequently adsorbed by UIO66. Finally, a FRET-based fluorescence detection signal was obtained. In mode II, the multi-Apts bound to the target, and the complementary chain BHQ1 was released to become the trigger chain for the next round of amplification of HCR with a fluorescence detection signal. HCR and RCA based multi-Apts were able to detect S. typhimurium as low as 2 CFU mL-1 and 1 CFU mL-1 respectively. Multi-Apts amplification strategy provides a new method for early diagnosis of pathogenic microorganisms in foods.

4.
Talanta ; 274: 126013, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569373

RESUMO

Successful construction of a detection method for Salmonella typhimurium (S. typhimurium) based on the synergy of hybridization chain reaction (HCR) and fluorescence was realized in this paper. First, the aptamer modified with the quenching group Black Hole Quencher-1 acid (BHQ1) was immobilized on the magnetic beads in combination with the complementary chain of the aptamer modified with 6-carboxyfluorescein (6-FAM). Second, S. typhimurium and cDNA-6-FAM immobilized on magnetic beads competitively bound to the aptamer. Finally, the cDNA-6-FAM was released after magnetic separation acted as a promoter to trigger HCR amplification when the target presented. The fluorescence signal could be significantly improved by the combination of green SYBR Green I (SGI) and HCR long double-stranded DNA and the fluorescent synergy of 6-FAM and SGI. Because of the separation of target and its aptamer, the trigger strand was abstracted by magnetic separation. There was no HCR to generate long double-stranded DNA, and the fluorescence of excess hairpin/SGI could be adsorbed through UIO66 so that only a very low background signal was detected. This fluorescent sensor was capable of monitoring S. typhimurium in the range of 10-3.2 × 107 CFU mL-1 with a limit of detection as low as 1.5 CFU mL-1. Because of the excellent properties of the aptasensor and the validity of SGI fluorescence synergy, this HCR enzyme-free amplification strategy could be generalized to other areas.


Assuntos
Aptâmeros de Nucleotídeos , Salmonella typhimurium , Salmonella typhimurium/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Fluorescência , Limite de Detecção , Corantes Fluorescentes/química , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência/métodos , Hibridização de Ácido Nucleico , Fluoresceínas/química , Estruturas Metalorgânicas/química
5.
J Cancer Res Clin Oncol ; 150(3): 155, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526702

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) features high aggressiveness, metastasis rate, drug resistance as well as poor prognosis. Osteopontin (OPN) is a key protein in the process of osteogenesis and has emerged as a new tumor marker in recent years. METHODS: Cell viability was tested with the CCK-8 kit. Transwell and wound healing were adopted to test cell invasive and migratory abilities. Tumor sphere formation was detected by tumor sphere formation assay. Human umbilical vein endothelial cell (HUVEC) tube formation assay was used to measure the angiogenesis of tumor cells. Western blot was applied for the estimation of the expression of cancer stem cell markers, angiogenesis-, signaling pathway-related proteins as well as OPN. Bioinformatics tools predicted OPN expression in breast cancer tissues. The levels of oxidative stress-related markers were assessed with ELISA. Following the overexpression of OPN in MD-MB-436 cells and the addition of the PI3K/AKT/mTOR pathway inhibitor LY294002, the aforementioned functional experiments were implemented again to investigate the mechanism. Finally, in vivo experiments of tumor-bearing mice were performed for further verification. RESULTS: The proliferative, invasive, migratory and tumor sphere formation capabilities as well as angiogenesis of TNBC cells were conspicuously increased in contrast to non-TNBC cell lines. OPN expression in TNBC tissues and cells was dramatically enhanced. OPN upregulation significantly elevated cell proliferative, invasive and migratory capabilities as well as tumor sphere formation and angiogenesis. The mechanism might be achieved by activating PI3K/AKT/mTOR signaling to regulate glutathione peroxidase 4 (GPX4)-mediated anti-lipid peroxidation. CONCLUSION: OPN promoted tumor sphere formation and angiogenesis in TNBC by activating the PI3K/AKT/mTOR pathway to regulate GPX4-mediated anti-lipid peroxidation levels.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteopontina/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Movimento Celular/fisiologia
6.
J Am Chem Soc ; 146(17): 11897-11905, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38544372

RESUMO

Although composite solid-state electrolytes (CSEs) are considered promising ionic conductors for high-energy lithium metal batteries, their unsatisfactory ionic conductivity, low mechanical strength, poor thermal stability, and narrow voltage window limit their practical applications. We have prepared a new lithium superionic conductor (Li-HA-F) with an ultralong nanofiber structure and ultrahigh room-temperature ionic conductivity (12.6 mS cm-1). When it is directly coupled with a typical poly(ethylene oxide)-based solid electrolyte, the Li-HA-F nanofibers endow the resulting CSE with high ionic conductivity (4.0 × 10-4 S cm-1 at 30 °C), large Li+ transference number (0.66), and wide voltage window (5.2 V). Detailed experiments and theoretical calculations reveal that Li-HA-F supplies continuous dual-conductive pathways and results in stable LiF-rich interfaces, leading to its excellent performance. Moreover, the Li-HA-F nanofiber-reinforced CSE exhibits good heat/flame resistance and flexibility, with a high breaking strength (9.66 MPa). As a result, the Li/Li half cells fabricated with the Li-HA-F CSE exhibit good stability over 2000 h with a high critical current density of 1.4 mA cm-2. Furthermore, the LiFePO4/Li-HA-F CSE/Li and LiNi0.8Co0.1Mn0.1O2/Li-HA-F CSE/Li solid-state batteries deliver high reversible capacities over a wide temperature range with a good cycling performance.

7.
Ecotoxicol Environ Saf ; 275: 116249, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522286

RESUMO

The microplastic pollution in freshwater system is gradually becoming more severe, which has led to increasing attention on the distribution and potential harmful effects of microplastics. Moreover, microplastics may have an impact on river ecology and pose risks to ecosystems. Therefore, it is important to reveal this process. This study aimed to explore correlations between microplastics and free-living microorganisms in an urban drinking water source of Xiangjiang River by using multivariate statistical analysis. The results indicated that the abundance of microplastics (size 50 µm to 5 mm) in surface water and sediments ranged from 0.72 to 18.6 (mean ± SD: 7.32 ± 2.36) items L-1 and 26.3-302 (150 ± 75.6) items kg-1 dry weight (dw), respectively, suggesting potential microplastic pollution despite the protected status as a drinking water source. Higher microplastic abundances were observed in urban areas and the downstream of wastewater plants, with mostly granular shape, transparent and black color as well as 50-100 µm in size. The multivariate statistical analysis presented that the abundance of microplastics is not significantly correlated with water indicators, due to the complexity of the abundance data. The water indicators showed an obvious correlation with microplastics in colors of transparent and black, and smaller sizes of 50-100 µm. This is also true for microplastics and microorganisms in water and sediment. Proteobacteria was the main prokaryote in water and sediments, being positively correlated with 50-100 µm microplastics; while Chloroplastida was the dominated eukaryotes, presenting a weak correlation with smaller-size microplastics. Overall, when considering the properties of microplastics such as shape, color and size, the potential correlations with water indicators and microorganisms were more evident than abundance. This study provides new insights into the multivariate statistical analysis, explaining the potential correlations among microplastic properties, microorganisms and environmental factors in a river system.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos , Qualidade da Água , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Sedimentos Geológicos
8.
Anal Bioanal Chem ; 416(5): 1105-1115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189917

RESUMO

Acetamiprid (ACE) is a highly effective broad-spectrum insecticide, and its widespread use is potentially harmful to human health and environmental safety. In this study, magnetic Fe3O4/carbon (Fe3O4/C), a derivative of metal-organic framework MIL-101 (Fe), was synthesized by a two-step calcination method. And a fluorescent sensing strategy was developed for the efficient and sensitive detection of ACE using Fe3O4/C and multiple complementary single-stranded DNA (ssDNA). By using aptamer with multiple complementary ssDNA, the immunity of interference of the aptasensor was improved, and the aptasensor showed high selectivity and sensitivity. When ACE was present, the aptamer (Apt) combined with ACE. The complementary strand of Apt (Cs1) combined with two short complementary strands of Cs1, fluorophore 6-carboxyfluorescein-labeled complementary strand (Cs2-FAM) and the other strand Cs3. The three strands formed a double-stranded structure, and fluorescence would not be quenched by Fe3O4/C. In the absence of ACE, Cs2-FAM would be in a single-chain state and would be adsorbed by Fe3O4/C, and the fluorescence of FAM would be quenched by Fe3O4/C via photoelectron transfer. This aptasensor sensitively detected ACE over a linear concentration range of 10-1000 nM with a limit of detection of 3.41 nM. The recoveries of ACE spiked in cabbage and celery samples ranged from 89.49% to 110.76% with high accuracy.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , DNA de Cadeia Simples , Verduras , Neonicotinoides , Fluorescência , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Limite de Detecção
9.
Anal Chim Acta ; 1287: 341938, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182333

RESUMO

Pathogenic bacteria are primarily kinds of food hazards that provoke serious harm to human health via contaminated or spoiled food. Given that pathogenic bacteria continue to reproduce and expand once they contaminate food, pathogenic bacteria of high concentration triggers more serious losses and detriments. Hence, it is essential to detect low-dose pollution at an early stage with high sensitivity. Aptamers, also known as "chemical antibodies", are oligonucleotide sequences that have attracted much attention owing to their merits of non-toxicity, small size, variable structure as well as easy modification of functional group. Aptamer-based bioanalysis has occupied a critical position in the field of rapid detection of pathogenic bacteria. This is attributed to the unique advantage of using aptamers as recognition elements in signal amplification strategies. The signal amplification strategy is an effective means to improve the detection sensitivity. Some diverse signal amplification strategies emphasize the synthesis and assembly of nanomaterials with signal amplification capabilities, while others introduce various nucleic acid amplification techniques into the detection system. This review focuses on a variety of signal amplification strategies employed in aptamer-based detection approaches to pathogenic bacteria. Meanwhile, we provided a detailed introduction to the design principles and characteristics of signal amplification strategies, as well as the improvement of sensor sensitivity. Ultimately, the existing issues and development trends of applying signal amplification strategies in apta-sensing analysis of pathogenic bacteria are critically proposed and prospected. Overall, this review discusses from a new perspective and is expected to contribute to the further development of this field.


Assuntos
Anticorpos , Nanoestruturas , Humanos , Bactérias/genética , Poluição Ambiental , Técnicas de Amplificação de Ácido Nucleico , Oligonucleotídeos
10.
Talanta ; 269: 125508, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070284

RESUMO

Penicillin antibiotics (PENs) play an important role in killing pathogenic bacteria. However, the residues of various penicillin antibiotics in milk gradually accumulate in the human body with the increase of milk intake, which causes direct harm to the human body. Aptamers can be used as recognition element of sensors. It is great significance to use broad-spectrum aptamers for simultaneous detection of PENs. In this study, we reported the screening and identification of DNA aptamers for PENs. The aptamers were screened by graphene oxide-systematic evolution of ligands by exponential enrichment (GO-SELEX). The broad-spectrum aptamers with high affinity and specificity were successfully obtained after 13 rounds of screening. The affinity and specificity of candidate aptamers were analyzed by a GO fluorescence competition method. Further sequence analysis revealed that a truncated 47 nt aptamer (P-11-1) had a higher affinity than the original 79 nt aptamer. The truncated aptamer P-11-1 was used as a recognition element, and an electrochemical aptasensor was prepared using gold nanoparticles (AuNPs) combined with ferroferric oxide-multi walled carbon nanotube (Fe3O4-MWCNTs) complex. The results showed that the developed aptasensor achieved the simultaneous detection of PENs in milk samples across a concentration range of 2 nM-10,000 nM, achieving a limit of detection of 0.667 nM. This methodology provided a simple and sensitive new thinking for antibiotic multi-residue detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Animais , Leite/química , Penicilinas/análise , Ouro/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
11.
Talanta ; 269: 125471, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061203

RESUMO

Gold nanoparticles (AuNPs)@N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@Titanium dioxide nanorods (TiO2NRs) were used as sensing materials to produce a unique encapsulated nanostructure aptasensor for the detection of acetamiprid residues in this work. ABEI, an analog of luminol, was extensively used as an electrochemiluminescence (ECL) reagent. The ECL mechanism of ABEI- hydrogen peroxide (H2O2) system had connections to a number of oxygen-centered free radicals. TiO2NRs improved ECL response with high electron transfer and a specific surface area. AuNPs were easy to biolabel and could catalyze H2O2 to enhance ECL signal. AuNPs were wrapped around TiO2NRs by utilizing the reduction property of ABEI to form wrapped modified nanomaterials. The sulfhydryl-modified aptamer bound to the nanomaterial by forming gold-sulfur (Au-S) bonds. The aptamer selectively bound to its target with the addition of acetamiprid, which caused a considerable decrease in ECL intensity and enabled quantitative detection of acetamiprid. The aptasensor showed good stability, repeatability and specificity with a broad detection range (1×10-2-1×103 nM) and a lower limit of detection (3 pM) for acetamiprid residues in vegetables. Overall, this aptasensor presents a simple and highly sensitive method for ECL detecting acetamiprid, with potential applications in vegetable safety monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos , Ouro/química , Verduras , Nanopartículas Metálicas/química , Limite de Detecção , Peróxido de Hidrogênio/química , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Luminol/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos
12.
Sci Total Environ ; 912: 168832, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036131

RESUMO

The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Inocuidade dos Alimentos , Impressão Molecular/métodos
13.
J Photochem Photobiol B ; 250: 112828, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101122

RESUMO

Rheumatoid arthritis (RA) is caused by inflammatory response of joints with cartilage and damage of synovium and bone erosion. In our previous studies, it has showed that irradiation of 630 nm LED reduce inflammation of synovial fibroblasts and cartilage and bone destruction in RA. However, the key genes and mechanism in ameliorating RA by irradiation of 630 nm LED remains unknown. In this study, human fibroblast-like synoviocytes (FLS) cell line MH7A and primary human RA-FLSs were treated with TNF-α and 630 nm LED irradiation with the different energy density. The mRNA sequencing was performed to screen the differentially expressed genes (DEGs). In all datasets, 10 DEGs were identified through screening. The protein interaction network analysis showed that 8 out of the 10 DEGs interacted with each other including IL-6, CXCL2, CXCL3, MAF, PGF, IL-1RL1, RRAD and BMP4. This study focused on BMP4, which is identified as important morphogens in regulating the development and homeostasis. CCK-8 assay results showed that 630 nm LED irradiation did not affect the cell viability. The qPCR and ELISA results showed that TNF-α stimulation inhibited BMP4 mRNA and protein level and irradiation of 630 nm LED increased the BMP4 mRNA and protein level in MH7A cells. In CIA and transgenic hTNF-α mice models, H&E staining showed that irradiation of 630 nm LED decreased the histological scores assessed from inflammation and bone erosion, while BMP4 expression level was up-regulated after 630 nm LED irradiation. Pearson correlation analysis shown that BMP4 protein expression was negatively correlated with the histological score of CIA mice and transgenic hTNF-α mice. These results indicated that BMP4 increased by irradiation of 630 nm LED was associated with the amelioration of RA, which suggested that BMP4 may be a potential targeting gene for photobiomodulation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proteína Morfogenética Óssea 4 , Luz , Animais , Humanos , Camundongos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/fisiologia , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Inflamação/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
BMC Plant Biol ; 23(1): 447, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736713

RESUMO

BACKGROUND: Inositol monophosphates (IMP) are key enzymes in the ascorbic acid (AsA) synthesis pathways, which play vital roles in regulating plant growth and development and stresses tolerance. To date, no comprehensive analysis of the expression profile of IMP genes and their functions under abiotic stress in cotton has been reported. RESULTS: In this study, the genetic characteristics, phylogenetic evolution, cis-acting elements and expression patterns of IMP gene family in cotton were systematically analyzed. A total of 28, 27, 13 and 13 IMP genes were identified in Gossypium hirsutum (G. hirsutum), Gossypium barbadense (G. barbadense), Gossypium arboreum (G. arboreum), and Gossypium raimondii (G. raimondii), respectively. Phylogenetic analysis showed that IMP family genes could cluster into 3 clades. Structure analysis of genes showed that GhIMP genes from the same subgroup had similar genetic structure and exon number. And most GhIMP family members contained hormone-related elements (abscisic acid response element, MeJA response element, gibberellin response element) and stress-related elements (low temperature response element, defense and stress response element, wound response element). After exogenous application of abscisic acid (ABA), some GhIMP genes containing ABA response elements positively responded to alkaline stress, indicating that ABA response elements played an important role in response to alkaline stress. qRT-PCR showed that most of GhIMP genes responded positively to alkaline stress, and GhIMP10D significantly upregulated under alkaline stress, with the highest up-regulated expression level. Virus-induced gene silencing (VIGS) experiment showed that compared with 156 plants, MDA content of pYL156:GhIMP10D plants increased significantly, while POD, SOD, chlorophyII and AsA content decreased significantly. CONCLUSIONS: This study provides a thorough overview of the IMP gene family and presents a new perspective on the evolution of this gene family. In particular, some IMP genes may be involved in alkaline stress tolerance regulation, and GhIMP10D showed high expression levels in leaves, stems and roots under alkaline stress, and preliminary functional verification of GhIMP10D gene suggested that it may regulate tolerance to alkaline stress by regulating the activity of antioxidant enzymes and the content of AsA. This study contributes to the subsequent broader discussion of the structure and alkaline resistance of IMP genes in cotton.


Assuntos
Antioxidantes , Ácido Ascórbico , Gossypium/genética , Ácido Abscísico , Filogenia , Inositol
15.
Mikrochim Acta ; 190(10): 403, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728643

RESUMO

An unsophisticated fluorescence-enabled strategy is brought forward to process the highly sensitive fluorescence detection of Salmonella typhimurium (S. typhimurium) which based on polyethyleneimine (PEI)-templated silver/copper nanoclusters (Ag/CuNCs) (λ excitation = 334 nm and λ emission = 466 nm) with cryonase-assisted target recycling amplification. The Ag/CuNCs nanoclusters are synthesized as fluorescent materials due to their strong and stable fluorescence characteristics and are modified with S. typhimurium aptamers to form aptamer-Ag/CuNCs probes. The probes can be adsorbed on the surface of quenching agents-polydopamine nanospheres (PDANSs), thereby inducing fluorescence quenching of the probes. Once the aptamers are bound to the target, the aptamers/targets complexes are separated from the PDANSs surface, and the Ag/CuNCs recover the fluorescence signal. The released complexes will immediately be transformed into a substrate digested by cryonase (an enzyme that can digest all types of nucleic acids), and the released targets are bound to another aptamers to initiate the next round of cleavage. This reaction will be repeated continuously until all relevant aptamers are consumed and all Ag/CuNCs are released, resulting in a significant amplification of the fluorescence signal and improved sensitivity. Using Ag/CuNCs as fluorescent probes combined with cryonase-assisted amplification strategy, the fluorescence aptasensor is constructed with detection limits as low as 3.8 CFU mL-1, which is tenfold better than without the cryonase assistance. The method developed has been applied to milk, orange juice, chicken, and egg white samples with excellent selectivity and accuracy providing an approach for the early and rapid detection of S. typhimurium in food.


Assuntos
Cobre , Salmonella typhimurium , Animais , Prata , Galinhas , Corantes Fluorescentes , Oligonucleotídeos
16.
Plant Physiol Biochem ; 203: 108001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688899

RESUMO

As a receptor for plant melatonin, CAND2/PMTR plays an important role in melatonin signaling. Most of the CANDs are membrane proteins and play indispensable roles in signal transduction. In this study, the CANDs from four cotton species were characterized, and the phylogenetic relationships, expression patterns, stress responses of cotton CANDs were analyzed by bioinformatics. Through the analysis of phylogenetic and protein structure, it was found that the CANDs in clade Ⅱ might function as cotton melatonin receptors, and most of the GhCANDs in clade Ⅱ were induced by melatonin. A putative cotton melatonin receptor, GhCAND2-D5, was functionally probed by gene silencing. The plants with silenced expression of this gene exhibited decreased salt tolerance. Protein interaction prediction identified that GhCAND2-D5 interacted with several membrane proteins and played an important role in melatonin signaling. This study provided a theoretical reference for further investigation of melatonin signaling in cotton.

17.
Ecotoxicol Environ Saf ; 263: 115386, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598545

RESUMO

Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes.


Assuntos
Cádmio , Gossypium , Gossypium/genética , Cádmio/toxicidade , Sobrevivência Celular , Cisteína , Fotossíntese/genética , Compostos de Enxofre , Enxofre
18.
Sci Total Environ ; 904: 166382, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595916

RESUMO

Solar heating is generally regarded as a clean and low-carbon heating method, while its high initial investment hinders its promotion in economically underdeveloped areas. With the implementation of the clean heating policy and the proposal of the carbon neutralization target, rural bulk coal heating in northern China is restricted. The Chinese government proposes to widely adopt solar heating to meet the heating demands of rural residents. In this research, the application of solar assisted heat pump systems in Beijing, Tianjin, Hebei and its surrounding areas in China is numerically simulated. A new evaluation method under the same initial investment constraint is proposed to verify its benefits throughout the entire life cycle. The results indicate that although solar thermal heating has the lowest environmental impact and carbon emissions among various heating methods, it is not the best solution to rural clean heating. The reason is that equal investment in other projects can bring much more benefits, such as roof solar photovoltaic. In contrast to the air source heat pump and photovoltaic panel scheme with the same initial investment, solar heating has obvious negative environmental impact, 53.3 % higher economic cost, 35.9 tons more carbon emissions, and 105.9 % higher roof area occupation. The sensitivity analysis of solar fraction, geographical coordinates, and energy price also supports the above findings. The recommendation is proposed to promote air source heat pumps or solar photovoltaic, rather than solar thermal collectors, so as to reduce the cost of rural clean heating and carbon emission reduction.

19.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570679

RESUMO

Clam peptides, marine-derived biological peptides, have been broadly investigated and applied as health foods, among which immunomodulation is one of their biological activities that cannot be ignored in vivo. In this study, we concentrated on exploring the effects of Ruditapes philippinarum peptides (RPPs) on immunomodulation and the balance of intestinal microbiota in hydrocortisone (HC)-induced immunosuppressed mice. The results revealed that RPPs could increase the thymus and spleen indices and number of white blood cells, promote the secretion level of cytokines (IL-2, IL-6, TNF-α, and INF-γ), repair the morphology of the spleen and thymus, and enhance the proliferation of T-lymphocyte subsets in immunosuppressed mice. Moreover, RPPs improved the abundance of beneficial bacteria and preserved the ecological equilibrium of the gut microbiota. In conclusion, RPPs have significant immunomodulatory effects on immunosuppressed mice and may be developed as immunomodulators or immune adjuvants in functional foods and drugs; they are also beneficial to the utilization of the high value of marine shellfish.


Assuntos
Bivalves , Hidrocortisona , Camundongos , Animais , Hospedeiro Imunocomprometido , Baço , Citocinas/farmacologia , Adjuvantes Imunológicos/farmacologia , Ciclofosfamida/farmacologia
20.
ACS Appl Mater Interfaces ; 15(23): 28073-28083, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253255

RESUMO

The development of aqueous zinc-ion batteries (AZIBs) still faces a huge challenge due to poor cycling stability and slow kinetics of the cathode material. In this work, we report an advanced cathode of Ti4+/Zr4+ as dual-supporting sites in Na3V2(PO4)3 with an expanded crystal structure, exceptional conductivity, and superior structural stability for AZIBs, which exhibits fast Zn2+ diffusion and excellent performance. The results of AZIBs afford remarkably high cycling stability (91.2% retention rate over 4000 cycles) and exceptional energy density (191.3 W h kg-1), outperforming most Na+ superionic conductor (NASICON)-type cathodes. Furthermore, different in/ex situ characterization techniques and theoretical studies reveal the reversible storage mechanism of Zn2+ in an optimal Na2.9V1.9Ti0.05Zr0.05(PO4)3 (NVTZP) cathode and demonstrate that Na+ defects together with Ti4+/Zr4+ sites can intrinsically contribute to the high electrical conductivity and low Na+/Zn2+ diffusion energy barrier of NVTZP. Moreover, the flexible soft-packaged batteries further demonstrate a superior capacity retention rate of 83.2% after 2000 cycles from the perspective of practicality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA