Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 9757-9770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318604

RESUMO

Background: The global prevalence of Dengue virus (DENV) infection poses a significant health risk, urging the need for effective vaccinations. Peptide vaccines, known for their capacity to induce comprehensive immunity against multiple virus serotypes, offer promise due to their stability, safety, and design flexibility. Spherical nucleic acid (SNA), particularly those with gold nanoparticle cores, present an attractive avenue for enhancing peptide vaccine efficacy due to their modularity and immunomodulatory properties. Methods: The spherical nucleic acid-TBB (SNA-TBB), a novel nanovaccine construct, was fabricated through the co-functionalization process of SNA with epitope peptide, targeting all four serotypes of the DENV. This innovative approach aims to enhance immunogenicity and provide broad-spectrum protection against DENV infections. The physicochemical properties of SNA-TBB were characterized using dynamic light scattering, zeta potential measurement, and transmission electron microscopy. In vitro assessments included endocytosis studies, cytotoxicity evaluation, bone marrow-dendritic cells (BMDCs) maturation and activation analysis, cytokine detection, RNA sequencing, and transcript level analysis in BMDCs. In vivo immunization studies in mice involved evaluating IgG antibody titers, serum protection against DENV infection and safety assessment of nanovaccines. Results: SNA-TBB demonstrated successful synthesis, enhanced endocytosis, and favorable physicochemical properties. In vitro assessments revealed no cytotoxicity and promoted BMDCs maturation. Cytokine analyses exhibited heightened IL-12p70, TNF-α, and IL-1ß levels. Transcriptomic analysis highlighted genes linked to BMDCs maturation and immune responses. In vivo studies immunization with SNA-TBB resulted in elevated antigen-specific IgG antibody levels and conferred protection against DENV infection in neonatal mice. Evaluation of in vivo safety showed no signs of adverse effects in vital organs. Conclusion: The study demonstrates the successful development of SNA-TBB as a promising nanovaccine platform against DENV infection and highlights the potential of SNA-based peptide vaccines as a strategy for developing safe and effective antiviral immunotherapy.


Assuntos
Células Dendríticas , Vacinas contra Dengue , Vírus da Dengue , Dengue , Animais , Vírus da Dengue/imunologia , Camundongos , Dengue/prevenção & controle , Dengue/imunologia , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/química , Vacinas contra Dengue/administração & dosagem , Células Dendríticas/imunologia , Apresentação de Antígeno , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Humanos , Nanopartículas Metálicas/química , Ouro/química , Feminino , Citocinas/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue
2.
Vaccines (Basel) ; 12(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38932292

RESUMO

The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 109, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.

3.
Viruses ; 14(7)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35891375

RESUMO

Dengue virus, the causative agent of dengue fever, life-threatening hemorrhagic fever, and shock syndrome, is mainly transmitted to humans through mosquito vectors. It can also be transmitted through atypical routes, including needle stick injury, vertical transmission, blood transfusion, and organ transplantation. In addition, sporadic cases which have no clear infectious causes have raised the respiratory exposure concerns, and the risks remain unclear. Here, we analyze the respiratory infectivity of the dengue virus in BALB/c suckling and adult immunodeficient mice by the intranasal inoculation of dengue virus serotype 2. The infected mice presented with clinical symptoms, including excitement, emaciation, malaise, and death. Viremia was detected for 3 days post inoculation. Histopathological changes were observed in the brain, liver, and spleen. The virus showed evident brain tropism post inoculation and viral loads peaked at 7 days post inoculation. Furthermore, the virus was isolated from the infected mice; the sequence homology between the origin and isolates was 99.99%. Similar results were observed in adult IFN-α/ß receptor-deficient mice. Overall, dengue virus can infect suckling mice and adult immune-deficient mice via the nasal route. This study broadens our perception of atypical dengue transmission routes and provides evidence of nasal transmission of dengue virus in the absence of mosquito vectors.


Assuntos
Vírus da Dengue , Dengue , Animais , Modelos Animais de Doenças , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos BALB C , Mosquitos Vetores , Replicação Viral
4.
Eur J Pharmacol ; 872: 172951, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32006560

RESUMO

Bitter taste receptors (Tas2rs) initiate a bitter taste signaling involving the activation of taste-specific G protein gustducin and phosphodiesterases (PDEs); it leads to the decrease of cytosolic level of cyclic adenosine monophosphate (cAMP) in taste cells. Recent studies have identified the expression of Tas2rs in a variety of non-lingual tissues including vascular smooth muscle (VSM), pulmonary smooth muscle and airway smooth muscle. The current study aims to determine the expression of Tas2rs and gustducin in rat aortic smooth muscle tissue and to investigate the effect of Tas2rs agonist denatonium on the tone of isolated denuded aorta rings. Here we reported the expression of six subtypes of Tas2r mRNA and the taste receptor-associated G proteins in endothelium-denuded aorta. Immunostaining experiments showed that the protein of gustducin expressed in vascular smooth muscle cells (VSMCs). Furthermore, denatonium increased the tone of freshly isolated denuded aorta rings in a concentration-dependent manner, and the potentiation effect of denatonium was blocked by a Tas2rs antagonist adenosine 5'-monophosphate (5'-AMP), by the cAMP-hydrolyzing PDE inhibitors, and by a cAMP-synthesizing enzyme activator forskolin, respectively. The blockade of Gßγ signaling did not have a negative impact on the denatonium-induced tonic contractions. These findings suggested that the functional Tas2rs and gustducin are expressed in rat aortic smooth muscle and that denatonium might increase the smooth muscle tone through a Tas2rs signaling pathway involving the activation of PDEs.


Assuntos
Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Compostos de Amônio Quaternário/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Monofosfato de Adenosina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , AMP Cíclico/metabolismo , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Paladar , Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA