Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407036

RESUMO

This study aimed to investigate the protective effects of ganoderic acids (GA) from Ganoderma lucidum against liver injury and intestinal microbial disorder in mice with excessive alcohol intake. Results showed GA supplement significantly inhibited the abnormal elevation of the liver index, serum lipid parameters, aspartate aminotransferase and alanine aminotransferase in mice exposed to alcohol intake, and also significantly protected the excessive lipid accumulation and pathological changes. Alcohol-induced oxidative stress in the liver was significantly ameliorated by GA intervention through reducing the levels of maleic dialdehyde and lactate dehydrogenase and increasing the levels of glutathione, catalase, superoxide dismutase and alcohol dehydrogenase. Intestinal microbiota profiling demonstrated GA intervention modulated the composition of intestinal microflora by increasing the levels of Lactobacillus, Faecalibaculum, Romboutsia, Bifidobacterium and decreasing the Helicobacter level. Furthermore, liver metabolomic profiling suggested GA intervention had a remarkable regulatory effect on liver metabolism with excessive alcohol consumption. Moreover, GA intervention regulated mRNA levels of alcohol metabolism, fatty lipid metabolism, oxidative stress, bile acid biosynthesis and metabolism-related genes in the liver. Conclusively, these findings demonstrate GA intervention can significantly relieve alcoholic liver injury and it is hopeful to become a new functional food ingredient for the prevention of alcoholic liver injury.

2.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681485

RESUMO

The potential effects of Auricularia auricula melanin (AAM) on the intestinal flora and liver metabolome in mice exposed to alcohol intake were investigated for the first time. The results showed that oral administration of AAM significantly reduced the abnormal elevation of serum total triglyceride (TG), cholesterol (TC), low density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and significantly inhibited hepatic lipid accumulation and steatosis in mice exposed to alcohol intake. Besides, the abnormally high levels of bile acids (BAs) and lactate dehydrogenase (LDH) in the liver of mice with alcohol intake were significantly decreased by AAM intervention, while the hepatic levels of glutathione (GSH) and superoxide dismutase (SOD) were appreciably increased. Compared with the model group, AAM supplementation significantly changed the composition of intestinal flora and up-regulated the levels of Akkermansia, Bifidobacterium, Romboutsia, Muribaculaceae, Lachnospiraceae_NK4A136_group, etc. Furthermore, liver metabolomics demonstrated that AAM had a significant regulatory effect on the composition of liver metabolites in mice with alcohol intake, especially the metabolites involved in phosphatidylinositol signaling system, ascorbate and aldarate metabolism, starch and sucrose metabolism, galactose metabolism, alpha-linolenic acid metabolism, glycolysis/gluconeogenesis, and biosynthesis of unsaturated fatty acids. At the gene level, AAM treatment regulated the mRNA levels of lipid metabolism and inflammatory response related genes in liver, including ACC-1, FASn, CPT-1, CD36, IFN-γ, LDLr and TNF-α. Conclusively, these findings suggest that AAM has potential beneficial effects on alleviating alcohol-induced liver injury and is expected to become a new functional food ingredient.

3.
Sci Rep ; 11(1): 8653, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883568

RESUMO

In this study, 0, 0.5, 1, 1.5, 2, 4, 6 and 8 mg·kg-1 of cadmium were added to the cultivation materials. In order to study the effects of different concentrations of Cd stress on J1 and J77, the contents of antioxidant enzymes, proline and malondialdehyde, Cd content, agronomic traits and yield of fruiting bodies of Agaricus brasiliensis were determined, and the nutritional components such as polysaccharide, triterpene, protein, total sugar and total amino acid were determined. The results showed that the physiological indexes of strain J1 and J77 changed regularly under different concentrations of Cd stress. J1 was a high absorption and low tolerance variety, while J77 was a low absorption and high tolerance variety. Low concentration of Cd promoted the growth of strain J1, and higher concentration of Cd promoted the growth of strain J77. The contents of protein and total amino acids in the two strains changed greatly, followed by polysaccharides, which indicated that Cd stress had the greatest impact on the three nutrients, and other nutrients were not sensitive to Cd stress.


Assuntos
Agaricus/efeitos dos fármacos , Cádmio/efeitos adversos , Agaricus/química , Agaricus/crescimento & desenvolvimento , Agaricus/fisiologia , Qualidade dos Alimentos , Malondialdeído/metabolismo , Prolina/metabolismo , Estresse Fisiológico/efeitos dos fármacos
4.
PLoS One ; 15(9): e0239617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32991614

RESUMO

Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.


Assuntos
Agaricus/metabolismo , Cádmio/metabolismo , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Agaricus/efeitos dos fármacos , Agaricus/genética , Cádmio/toxicidade , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Tolerância a Medicamentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Micélio/química , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Polissacarídeos/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA