Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569554

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Assuntos
Adenosina , Adenosina/análogos & derivados , RNA Helicases DEAD-box , Exorribonucleases , Instabilidade Genômica , Metiltransferases , Estruturas R-Loop , RNA Polimerase II , Terminação da Transcrição Genética , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Dano ao DNA , Células HeLa , RNA/metabolismo , RNA/genética , Transcrição Gênica , Metilação de RNA
2.
Protein Cell ; 13(12): 920-939, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377064

RESUMO

SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/genética , Macaca mulatta , SARS-CoV-2/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA