Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Brain Funct ; 19(1): 20, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986005

RESUMO

BACKGROUND: Autistic traits (ATs) are frequently reported in children with Attention-Deficit/Hyperactivity Disorder (ADHD). This study aimed to examine ATs in children with ADHD from both behavioral and neuroimaging perspectives. METHODS: We used the Autism Spectrum Screening Questionnaire (ASSQ) to assess and define subjects with and without ATs. For behavioral analyses, 67 children with ADHD and ATs (ADHD + ATs), 105 children with ADHD but without ATs (ADHD - ATs), and 44 typically developing healthy controls without ATs (HC - ATs) were recruited. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and analyzed the mean amplitude of low-frequency fluctuation (mALFF) values (an approach used to depict different spontaneous brain activities) in a sub-sample. The imaging features that were shared between ATs and ADHD symptoms or that were unique to one or the other set of symptoms were illustrated as a way to explore the "brain-behavior" relationship. RESULTS: Compared to ADHD-ATs, the ADHD + ATs group showed more global impairment in all aspects of autistic symptoms and higher hyperactivity/impulsivity (HI). Partial-correlation analysis indicated that HI was significantly positively correlated with all aspects of ATs in ADHD. Imaging analyses indicated that mALFF values in the left middle occipital gyrus (MOG), left parietal lobe (PL)/precuneus, and left middle temporal gyrus (MTG) might be specifically related to ADHD, while those in the right MTG might be more closely associated with ATs. Furthermore, altered mALFF in the right PL/precuneus correlated with both ADHD and ATs, albeit in diverse directions. CONCLUSIONS: The co-occurrence of ATs in children with ADHD manifested as different behavioral characteristics and specific brain functional alterations. Assessing ATs in children with ADHD could help us understand the heterogeneity of ADHD, further explore its pathogenesis, and promote clinical interventions.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Autístico , Humanos , Criança , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/complicações , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem
2.
Neurosci Bull ; 39(10): 1481-1496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36884214

RESUMO

The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.


Assuntos
Anemia , Globinas , Ratos , Animais , Neuroglobina/metabolismo , Globinas/genética , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hipóxia/metabolismo , Encéfalo/metabolismo , Oxigênio , Anemia/metabolismo , Adenosina Trifosfatases/metabolismo
3.
Metab Brain Dis ; 37(6): 2017-2026, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579787

RESUMO

BACKGROUND: Bone marrow stromal cells (BMSCs) transplantation is a treatment strategy for ischemic stroke (IS) with great potential. However, the vitality, migration and adhesion of BMSCs are greatly impaired due to the harsh environment of the ischemic area, which affects the therapeutic effects. Herein, we aimed to investigate the roles of nerve growth factor (NGF) in regulating cell behaviors of BMSCs in IS. METHODS: The mRNA and protein expressions were assessed using qRT-PCR and western blot, respectively. To simulate ischemic-like conditions in vitro, Brain microvascular (bEnd.3) cells were exposed to oxygen and glucose deprivation (OGD). Cell viability and cell proliferation were evaluated by MTT assay and BrdU assay, respectively. Transwell migration and cell adhesion assays were carried out to determine cell migration and adhesion of BMSCs, respectively, coupled with flow cytometry to evaluate cell apoptosis of bEnd.3 cells. Finally, angiogenesis assay was performed to assess the angiogenesis ability of bEnd.3 cells. RESULTS: NGF overexpression resulted in increased cell vitality, adhesion and migration of BMSCs, while NGF knockdown presented the opposite effects. We subsequently discovered that TrkA was a receptor for NGF, and TrkA knockdown significantly inhibited the cell viability, migration and adhesion of BMSCs. Besides, Nrf2 was confirmed as the downstream target of NGF/TrkA to promote the viability, adhesion and migration of BMSC cells. Finally, NGF-silenced BMSCs could not effectively restore the OGD-induced brain microvascular cell damage. CONCLUSIONS: NGF/TrkA promoted the viability, migration and adhesion of BMSCs in IS via activating Nrf2 pathway.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Neural , Animais , Células da Medula Óssea/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Hipóxia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA
4.
Oxid Med Cell Longev ; 2014: 653732, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967005

RESUMO

Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU(+)-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA), reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC). Pharmacological administration of specific p38 (SB203580) or JNK (SP600125) inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NF κ B activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM) in the brain by suppressing tumor invasion and metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Dioxolanos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Linhagem Celular Tumoral , Ensaios de Migração Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteínas I-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos
5.
Mol Neurobiol ; 49(1): 149-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23904011

RESUMO

Neuroglobin, the third mammalian globin with a hexa-coordinated heme, exists predominantly in neurons of the brain. Neuroglobin plays an important role in neuronal death upon ischemia and oxidative stress. The physiological function of neuroglobin remains unclear. Here, we report a novel function of neuroglobin in neurite development. Knocking-down neuroglobin exhibited a prominent neurite-deficient phenotype in mouse neuroblastoma N2a cells. Silencing neuroglobin prevented neurite outgrowth, while ectopic expression of neuroglobin but not homologous cytoglobin promoted neurite outgrowth of N2a cells upon serum withdrawal. In primary cultured rat cerebral cortical neurons, neuroglobin was upregulated and preferentially distributed in neurites during neuronal development. Overexpression of neuroglobin but not cytoglobin in cultured cortical neurons promoted axonal outgrowth, while knocking-down of neuroglobin retarded axonal outgrowth. Neuroglobin overexpression suppressed phosphatase and tensin homolog (PTEN) but increased Akt phosphorylation during neurite induction. Bimolecular fluorescence complementation and glutathione S-transferase pull-down assays revealed that neuroglobin and various mutants (E53Q, E118Q, K119N, H64A, H64L, and Y44D) bound with Akt and PTEN differentially. Neuroglobin E53Q showed a prominent reduced PTEN binding but increased Akt binding, resulting in decreased p-PTEN, increased p-Akt, and increased neurite length. Taken together, we demonstrate a critical role of neuroglobin in neuritogenesis or development via interacting with PTEN and Akt differentially to activate phosphatidylinositol 3-kinase/Akt pathway, providing potential therapeutic applications of neuroglobin for axonopathy in neurological diseases.


Assuntos
Diferenciação Celular/genética , Globinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuritos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Globinas/biossíntese , Globinas/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuroglobina , PTEN Fosfo-Hidrolase/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
6.
Biochem Biophys Res Commun ; 437(1): 87-93, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23796709

RESUMO

Piperlongumine (PL), a natural alkaloid isolated from the long pepper, may have anti-cancer properties. It selectively targets and kills cancer cells but leaves normal cells intact. Here, we reported that PL selectively killed glioblastoma multiforme (GBM) cells via accumulating reactive oxygen species (ROS) to activate JNK and p38. PL at 20µM could induce severe cell death in three GBM cell lines (LN229, U87 and 8MG) but not astrocytes in cultures. PL elevated ROS prominently and reduced glutathione levels in LN229 and U87 cells. Antioxidant N-acetyl-L-cysteine (NAC) completely reversed PL-induced ROS accumulation and prevented cell death in LN229 and U87 cells. In LN229 and U87 cells, PL-treatment activated JNK and p38 but not Erk and Akt, in a dosage-dependent manner. These activations could be blocked by NAC pre-treatment. JNK and p38 specific inhibitors, SB203580 and SP600125 respectively, significantly blocked the cytotoxic effects of PL in LN229 and U87 cells. Our data first suggests that PL may have therapeutic potential for one of the most malignant and refractory tumors GBM.


Assuntos
Dioxolanos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dioxolanos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Humanos
7.
Mol Pharmacol ; 83(5): 1109-19, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478801

RESUMO

Hypoxia and oxidative stress are critical factors in carcinogenesis and exist throughout cancer development; however, the underlying mechanisms are far from clear. Here, for the first time to our knowledge, we reported that neuroglobin (Ngb), an intracellular hexa-coordinated globin serving as an oxygen/reactive oxygen species (ROS) sensor, functions as a tumor suppressor in hepatocelluar carcinoma (HCC). Ngb protein and mRNA expression were significantly down-regulated in tumor tissues, compared with its adjacent non-tumor tissues of human HCC samples and normal liver tissues. Knock-down of Ngb by RNA interference promoted human HCC cell line (HepG2) growth and proliferation, G0/G1-S transition in vitro, and tumor growth in vivo. On the contrary, overexpression of Ngb suppressed HepG2 cell growth and proliferation, G0/G1-S transition, colony formation in vitro, and tumorigenicity in vivo. These results established a tumor suppressor function of Ngb in HCC. The underlying mechanisms were further investigated. Overexpression of Ngb suppressed Raf/MEK/extracellular signal-regulated kinase (Erk), whereas knockdown of Ngb enhanced Raf/MEK/Erk activation in HepG2 cells in vitro and in vivo. Glutathione S-transferase pull-down showed that Ngb interacted with c-Raf-1 in HepG2 cells. Overexpression of Ngb suppressed serum- and H2O2-stimulated Erk activation in HepG2 cells. Pharmacological inhibition of Erk activation abolished the proliferative effect of Ngb knockdown in HepG2 cells. Mutation of Ngb at its oxygen-binding site (H64L) abolished the inhibitory effects of Ngb on Erk activation and HepG2 cell proliferation. Therefore, we propose that Ngb controls HCC development by linking oxygen/ROS signals to oncogenic Raf/mitogen-activated protein kinase (MAPK)/Erk signaling. Our data suggest that neuroglobin could be a new target for cancer therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Globinas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinoma Hepatocelular/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Globinas/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/genética , Neuroglobina , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/genética , Quinases raf/genética , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA