Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 131748, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670194

RESUMO

Bio-based shape memory materials have attracted wide attention due to their biocompatibility, degradability and safety. However, designing and manufacturing wearable bio-based shape memory films with excellent flexibility and toughness is still a challenge. In this work, silk fibroin substrate with a ß-sheet structure was combined with a tri-block shape memory copolymer to prepare a transparent composited shape memory film. The silk fibroin-based film showed a dual-responsive shape memory function, which can respond to both temperature and water stimuli. This film has a sensitive water-responsive shape memory, which starts deforming after exposure to water for 3 s and fully recovers in 30 s. In addition, the composite film shows highly stretchable (>300 %) and could maintain its high tensile properties after 5 cycles of regeneration. The films also exhibited rapid degradation ability. This study provides new insights for the design of dual-responsive shape memory materials by combining biocompatible matrix and multi-block SMP to simultaneously enhance the mechanical properties, which can be used for intelligent packaging, medical supplies, soft actuators and wearable devices.

2.
Sci Total Environ ; 926: 171929, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522528

RESUMO

The emerging nitrogen removal process known as CANDAN (Complete Ammonium and Nitrate removal via Denitratation-Anammox over Nitrite) has been developed in Sequencing Batch Reactors (SBRs). Yet, starting up and maintaining stability in continuous-flow reactors remain challenging. This study explores the feasibility of transitioning the CANDAN process from an anammox-dominated process by introducing appropriate external organics to facilitate indigenous nitrite-producing denitrification community in an Upflow Anaerobic Sludge Blanket (UASB) reactor. 150-day operation results indicate that under feeding rates of domestic wastewater at 0.54 L/h and nitrate-containing wastewater at 1.08 L/h, excellent N removal was achieved, with effluent TN below 10.0 mg N/L. Adding external sodium acetate at a COD/NO3--N = 2.0 triggered denitratation, ex-situ denitrification activity tests showed increased nitrite production rates, maintaining the nitrate-to-nitrite transformation ratio (NTR) above 90 %. Consequently, anammox activity was consistently maintained, dominating Total Nitrogen (TN) removal with a contribution as high as 78.3 ± 8.0 %. Anammox functional bacteria, Brocadia and Kuenenia were identified and showed no decrease throughout the operation, indicating the robustness of the anammox process. Notably, the troublesome of sludge flotation, did not occur, also contributing to sustained outstanding performance. In conclusion, this study advances our understanding of the synergistic interplay between anammox and denitrifying bacteria in the Anammox-UASB system, offering technical insights for establishing a stable continuous-flow CANDAN process for simultaneous ammonium and nitrate removal.


Assuntos
Compostos de Amônio , Esgotos , Nitritos , Águas Residuárias , Nitratos , Desnitrificação , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Anaerobiose , Nitrogênio/análise , Bactérias
3.
Cancer Immunol Immunother ; 73(5): 91, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554157

RESUMO

BACKGROUND: Accumulation studies found that tumor-associated macrophages (TAMs) are a predominant cell in tumor microenvironment (TME), which function essentially during tumor progression. By releasing bioactive molecules, including circRNA, small extracellular vesicles (sEV) modulate immune cell functions in the TME, thereby affecting non-small cell lung cancer (NSCLC) progression. Nevertheless, biology functions and molecular mechanisms of M2 macrophage-derived sEV circRNAs in NSCLC are unclear. METHODS: Cellular experiments were conducted to verify the M2 macrophage-derived sEV (M2-EV) roles in NSCLC. Differential circRNA expression in M0 and M2-EV was validated by RNA sequencing. circFTO expression in NSCLC patients and cells was investigated via real-time PCR and FISH. The biological mechanism of circFTO in NSCLC was validated by experiments. Our team isolated sEV from M2 macrophages (M2Ms) and found that M2-EV treatment promoted NSCLC CP, migration, and glycolysis. RESULTS: High-throughput sequencing found that circFTO was highly enriched in M2-EV. FISH and RT-qPCR confirmed that circFTO expression incremented in NSCLC tissues and cell lines. Clinical studies confirmed that high circFTO expression correlated negatively with NSCLC patient survival. Luciferase reporter analysis confirmed that miR-148a-3p and PDK4 were downstream targets of circFTO. circFTO knockdown inhibited NSCLC cell growth and metastasis in in vivo experiments. Downregulating miR-148a-3p or overexpressing PDK4 restored the malignancy of NSCLC, including proliferation, migration, and aerobic glycolysis after circFTO silencing. CONCLUSION: The study found that circFTO from M2-EV promoted NSCLC cell progression and glycolysis through miR-148a-3p/PDK4 axis. circFTO is a promising prognostic and diagnostic NSCLC biomarker and has the potential to be a candidate NSCLC therapy target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Microambiente Tumoral
4.
Int J Biol Macromol ; 261(Pt 2): 129761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290634

RESUMO

The weak immunity of tumors after chemotherapy could cause tumor metastasis and progression. Therefore, to overcome the dilemma of obvious immune deficiency caused by chemotherapy, a nanosystem (N-IL-12/DOX/α-TOS) consisted of thioketal (TK) bonds linked-hollow mesoporous silica nanoparticles (HMSNs) coated with carboxymethyl chitin (CMCH) by electrostatic interaction, and surface-functionalized glucose-regulated protein 78 binding peptide was prepared for loading doxorubicin (DOX), IL-12 and α-tocopheryl succinate (α-TOS). N-IL-12/DOX/α-TOS displayed a mean size of 275 nm after encapsulated DOX, IL-12 and α-TOS with loading contents of 2.04 × 10-4, 4.01 × 10-2 and 7.12 × 10-2, respectively. The drug-free nanoparticles (NPs) showed good biocompatibility to both 4 T1 cells and RAW264.7 macrophages. N-IL-12/DOX/α-TOS could achieve localized release of IL-12, DOX and α-TOS by pH and H2O2 trigger in the tumor microenvironment (TME). Moreover, the combined therapy by N-IL-12/DOX/α-TOS remarkably elevated the anti-tumor therapeutic efficacy, enhanced immune responses via promoting tumor-associated macrophage (TAM) polarization into tumoricidal M1 phenotypes, and decreased lung metastasis with reduced side effects. N-IL-12/DOX/α-TOS exhibited as a promising strategy for combining chemotherapy and local macrophage modulation-immunotherapy for anti-tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Dióxido de Silício/química , Peróxido de Hidrogênio , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Nanopartículas/química , alfa-Tocoferol/química , Interleucina-12 , Macrófagos , Quitina , Porosidade , Microambiente Tumoral
5.
Front Immunol ; 14: 1276074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155968

RESUMO

Lung cancer is the main cause of cancer-related deaths, and non-small cell lung cancer (NSCLC) is the most common type. Understanding the potential mechanisms, prognosis, and treatment aspects of NSCLC is essential. This study systematically analyzed the correlation between mitophagy and NSCLC. Six mitophagy-related feature genes (SRC, UBB, PINK1, FUNDC1, MAP1LC3B, and CSNK2A1) were selected through machine learning and used to construct a diagnostic model for NSCLC. These feature genes are closely associated with the occurrence and development of NSCLC. Additionally, NSCLC was divided into two subtypes using unsupervised consensus clustering, and their differences in clinical characteristics, immune infiltration, and immunotherapy were systematically analyzed. Furthermore, the interaction between mitophagy-related genes (MRGs) and immune cells was analyzed using single-cell sequencing data. The findings of this study will contribute to the development of potential diagnostic biomarkers for NSCLC and the advancement of personalized treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mitofagia/genética , Genes Reguladores , Análise de Sequência de RNA
6.
J Pain Res ; 16: 4291-4299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111748

RESUMO

Introduction: To explore the incidence and predictive factors of new onset postoperative sacroiliac joint pain (PSJP) after posterior lumbar fusion surgery for degenerative lumbar disease. Methods: Three hundred and sixty-seven patient medical records from January 2020 to December 2021 were retrieved. The patients were divided into two groups: PSJP group and N-PSJP (non-postoperative sacroiliac joint pain group). To investigate potential risk factors for PSJP, HU value (Hounsfield unit value) was assessed on CT scans. ImageJ software was used to assess the fat and muscle of the lumbar multifidus muscle (LMM) in the axial MRI image, the red area was marked as fat and the rest were muscles to calculate the ratio of fatty infiltration. Patient characteristics, surgical variables and radiographic parameters were analyzed statistically. Results: Twenty of 367 patients were diagnosed with PJSP at postoperative follow-up. Patients with PSJP presented with significantly higher HU value. For surgical variables, PSJP patients received more operations including distal fusion level at sacrum than the N-PSJP group. For radiographic parameters, most of the patients in the PSJP group had more severe fatty atrophic muscle in the LMM compared to the N-PSJP group. There was no statistically significant difference between the two groups in preoperative and postoperative lumbar lordosis (LL), angle of lumbar lordosis of fixed lumbar vertebrae (FV-LL), pelvic incidence (PI), sacrum slope (SS). The bivariate logistic regression model revealed preoperative fat infiltration rate of the LMM, and higher HU value were independently associated with PSJP. Conclusion: PSJP for degenerative lumbar disease was 5.4%, the predictive factors included preoperative severe infiltration of LMM, distal fusion level at sacrum and higher HU value.

7.
Vet Microbiol ; 284: 109824, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406407

RESUMO

The infection and replication of avian influenza virus (AIV) in host cells is a complex biological process that involves the transport of viral genes through the host cell's transport systems. Actin, microtubules and vimentin are known to facilitate transport of endosomes to the perinuclear region, but the biological role of Keratin, another intermediate filament, in viral transport during AIV replication is not well understood. In this study, the viral NS2 protein was used as the target protein to identify the potential interacting proteins following GST-Pulldown method and protein mass spectrometry. It was discovered that Keratin10 interacted with NS2. Subsequently, it was found AIV infection did not affect the gene level or protein level of keratin10 in HeLa cells, but when Keratin10 was knocked down, the expressions of viral NP mRNA and protein were reduced, and the generation of offspring virus also was also decreased. Furthermore, in early viral infection, Keratin10 could aggregate and co-localize with NP proteins, suggesting that Keratin10 might be connected to early viral transport. Additionally, it was demonstrated that Keratin10 co-localized with Lamp1 and that AIV particles were trapped in late endosomes/Lysosomes after Keratin10 was knocked down. Finally, it was discovered that the knocking down Keratin10 in HeLa cells led to an increase in the acidic pH of endosomes and lysosomes, which prevented AIV from undergoing fusion and uncoating, and then inhibited the process of the viral infection. Overall, the results suggested that Keratin10 might play the critical role in the release of vRNPs from LEs/Ls and can affect the generation of offspring virus. The study provides the novel insights into the role of Keratin10 in the process of AIV infection and transmission, which may have implications for developing new strategies to against AIV infections.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Galinhas , Endossomos , Genoma Viral , Células HeLa , Vírus da Influenza A Subtipo H9N2/genética , Replicação Viral
8.
Environ Sci Technol ; 57(24): 9075-9085, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37284751

RESUMO

The novel partial denitrification-driven anammox (PD/A) is an energy-efficient method for nitrogen removal from wastewater. However, its stability and efficiency are impeded by the competition between heterotrophic denitrifying bacteria and relatively slow-growing anammox bacteria. In this study, a PD/A granular sludge system was developed, which achieved a nitrogen removal efficiency of 94% with 98% anammox contribution, even as the temperature dropped to 9.6 °C. Analysis of bacterial activity in aggregates of different sizes revealed that the largest granules (>2.0 mm) exhibited the highest anammox activity, 2.8 times that of flocs (<0.2 mm), while the flocs showed significantly higher nitrite production rates of PD, more than six times that of the largest granules. Interestingly, fluorescent in situ hybridization (FISH) combined with confocal laser scanning microscopy (CLSM) revealed a nest-shaped structure of PD/A granules. The Thauera genus, a key contributor to PD, was highly enriched at the outer edge, providing substrate nitrite for anammox bacteria inside the granules. As temperature decreased, the flocs transformed into small granules to efficiently retain anammox bacteria. This study provides multidimensional insights into the spatiotemporal assembly and immigration of heterotrophic and autotrophic bacteria for stable and high-rate nitrogen removal.


Assuntos
Desnitrificação , Nitritos , Nitrogênio , Emigração e Imigração , Hibridização in Situ Fluorescente , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Esgotos/microbiologia , Bactérias
9.
Sci Total Environ ; 884: 163581, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086990

RESUMO

Partial denitrification (PD) provides a promising approach of efficient and stable nitrite (NO2--N) generation for annamox. In this study, the feasibility of short-term sludge anaerobic fermentation driving PD was evaluated. It was found that a higher NO2--N accumulation in nitrate (NO3--N) reduction was obtained with the 5-days fermented sludge compared to 8 and 15-days fermentation. Moreover, compared to acetate as carbon source, sludge fermentation products (SFPs) induced the higher NO2--N production with nitrate-to-nitrite transformation ratio (NTR) nearly 100 %. Denitrification activity of fermented sludge were obviously improved with SFPs as electron donor. Metagenomic analysis revealed that Thauera was the dominant bacteria, which was assumed to be the key contributor to PD performance by harboring the highest narGHI and napAB but much lower nirS and nirK. Under the conditions of SFPs and fermented sludge, Thauera was speculated to have higher resistance than other denitrifiers attributed to versatile carbon metabolic capabilities utilizing SFPs with the significantly improved genes for metabolism of complex organic carbon via glycolysis after anaerobic fermentation. A novel integration of sludge fermentation driving PD and anammox for mainstream wastewater treatment and sidestream polishing was proposed to offer a promising application with reduced commercial carbon source consumption and waste sludge reduction.


Assuntos
Nitritos , Esgotos , Fermentação , Nitritos/metabolismo , Nitratos/metabolismo , Águas Residuárias , Desnitrificação , Anaerobiose , Cinética , Dióxido de Nitrogênio , Reatores Biológicos , Nitrogênio , Carbono/metabolismo , Oxirredução
10.
Life Sci ; 323: 121592, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934972

RESUMO

AIMS: DEAD-box helicase 1 (DDX1) has oncogenic properties in several human cancers. However, the clinical significance and biological role of DDX1 in non-small cell lung cancer (NSCLC) remain elusive. Here, we examined the chemotherapeutic relevance of DDX1 in NSCLC. MAIN METHODS: We used the UALCAN database, Western blot analysis, and immunohistochemical and RT-qPCR assays to assess DDX1 expression in NSCLC cell lines (H1650 and A549) and patient tissues. The role of DDX1 in the chemosensitivity of NSCLC cells and the underlying mechanisms were determined using colony formation, CCK-8, flow cytometry, wound healing, Transwell, tumor sphere formation, and immunostaining assays, together with a xenograft tumor model in nude mice. KEY FINDINGS: Our study revealed that DDX1 was overexpressed in NSCLC cell lines and tissues. We further found that depleting DDX1 increased the sensitivity of NSCLC cells to the chemotherapy drug cisplatin, increased cell apoptosis, and inhibited cell migration and invasion. Co-immunoprecipitation assays revealed that DDX1 bound to ADAR1, and increased ADAR1 protein expression. Furthermore, we found that ADAR1 mediated cancer-promoting effects, independent of deaminase activity, by binding to RAC3 mRNA. Our findings not only show that DDX1 mediates chemosensitivity to cisplatin via the ADAR1/RAC3 axis but also highlight the importance of ADARs as essential RNA-binding proteins for cell homeostasis, as well as cancer progression. SIGNIFICANCE: Our results suggest that DDX1 plays an important role in the development and progression of human NSCLC and that DDX1 may serve as a therapeutic target in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Adenosina Desaminase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cisplatino/farmacologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo
11.
Vaccines (Basel) ; 11(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36992180

RESUMO

Avian influenza virus (AIV) subtype H9N2 is the most widespread AIV in poultry worldwide, causing great economic losses in the global poultry industry. Chickens and ducks are the major hosts and play essential roles in the transmission and evolution of H9N2 AIV. Vaccines are considered an effective strategy for fighting H9N2 infection. However, due to the differences in immune responses to infection, vaccines against H9N2 AIV suitable for use in both chickens and ducks have not been well studied. This study developed an inactivated H9N2 vaccine based on a duck-origin H9N2 AIV and assessed its effectiveness in the laboratory. The results showed that the inactivated H9N2 vaccine elicited significant haemagglutination inhibition (HI) antibodies in both chickens and ducks. Virus challenge experiments revealed that immunization with this vaccine significantly blocked virus shedding after infection by both homogenous and heterologous H9N2 viruses. The vaccine was efficacious in chicken and duck flocks under normal field conditions. We also found that egg-yolk antibodies were produced by laying birds immunized with the inactivated vaccine, and high levels of maternal antibodies were detected in the serum of the offspring. Taken together, our study showed that this inactivated H9N2 vaccine could be extremely favourable for the prevention of H9N2 in both chickens and ducks.

12.
PLoS Biol ; 21(3): e3002039, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930652

RESUMO

Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Humanos , Animais , Suínos , Interferons , Antivirais/farmacologia , Proteínas/genética , Vírus da Diarreia Epidêmica Suína/genética
13.
Enzyme Microb Technol ; 166: 110228, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940599

RESUMO

In order to excavate microbial epoxide hydrolases (EHs) with desired catalytic properties, a novel EH, SfEH1, was identified based on the genome annotation of Streptomyces fradiae and sequence alignment analysis with local protein library. The SfEH1-encoding gene, sfeh1, was then cloned and over-expressed in soluble form in Escherichia coli/BL21(DE3). The optimal temperature and pH of recombinant SfEH1 (reSfEH1) and reSfEH1-expressing E. coli (E. coli/sfeh1) were both determined as 30 â„ƒ and 7.0, also indicating that the influences of temperature and pH on reSfEH1's activities were more obvious than those of E. coli/sfeh1 whole cells. Subsequently, using E. coli/sfeh1 as catalyst, its catalytic properties towards thirteen common mono-substituted epoxides were tested, in which E. coli/sfeh1 had the highest activity of 28.5 U/g dry cells for rac-1,2-epoxyoctane (rac-6a), and (R)-1,2-pentanediol ((R)-3b) (or (R)-1,2-hexanediol ((R)-4b)) with up to 92.5% (or 94.1%) eep was obtained at almost 100% conversion ratio. Regioselectivity coefficients (αS and ßR) displayed in the enantioconvergent hydrolysis of rac-3a (or rac-4a) were calculated to be 98.7% and 93.8% (or 95.2% and 98.9%). Finally, the reason of the high and complementary regioselectivity was confirmed by both kinetic parameter analysis and molecular docking simulations.


Assuntos
Epóxido Hidrolases , Escherichia coli , Simulação de Acoplamento Molecular , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Compostos de Epóxi/química
14.
Sci Total Environ ; 862: 160749, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496026

RESUMO

The granule instability has been frequently reported during the operation of high loading rates. While, there no research was performed on the recently developed anoxic partial-denitrification (PD) granules, a novel pathway in producing nitrite from nitrate for anammox process. Herein, this work, for the first time, investigated the influence of nitrate loading rates on the instability of PD granules and identified the key causes. Two lab-scale sequencing batch reactors (SBRs) were operated with nitrate loading rates (NLR) increased from 0.48 to 3.84 kg N/m3/d (R1, 8 cycles/d), and 0.96 to 7.68 kg N/m3/d (R2, 16 cycles/d) by gradually elevating the influent nitrate concentration. Results showed that nitrite production rates increased with the NLRs, with a maximal value of 5.26 kg N/m3/d obtained. However, the compact regular PD granules were not stable and broke down when NLR was above 3.84 kg N/m3/d, which resulted in serious sludge washing out from SBR. The high NLRs led to the extracellular polymeric substances (EPS) transformation in terms of its composition and structure, which the protein content in the EPS and the tightly bound EPS (T-EPS) fraction was significantly decreased, this was supposed to be the major reason causing the breakdown of PD granules. Besides, it was found the PD granule in R2 was more deteriorated than that in R1 under the same high NLR, suggesting the short starvation (idle) times in SBR cycle was likely another reason impairing the stability of PD granules. Overall, this research provides useful information in development of granule-based PD systems and sheds light on achieving high-rate nitrite production in SBR with great stability.


Assuntos
Nitratos , Esgotos , Esgotos/química , Nitritos , Desnitrificação , Reatores Biológicos , Nitrogênio
15.
Vaccines (Basel) ; 10(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36560500

RESUMO

Goose astrovirus (GAstV) leads to viscera and joints urate deposition in 1- to 20-day-old goslings, with a mortality rate of up to 50%, posing a severe threat to entire colonies; however, there is no efficient prevention and control method for GAstV infection. This study describes a prophylactic anti-GAstV strategy based on the specific immunoglobulin Y (IgY) from egg yolk. The specific IgY was produced by 22-week-old laying hens intramuscularly immunized with the inactivated GAstV three consecutive times, with 2-week intervals. The egg yolk was collected weekly after the immunization and the anti-GAstV IgY titer was monitored using an agar gel immune diffusion assay (AGID). The results revealed that the AGID titer began to increase on day 7, reached a peak on day 49, and remained at a high level until day 77 after the first immunization. The specific IgY was prepared from the combinations of egg yolk from day 49 to day 77 through PEG-6000 precipitation. Animal experiments were conducted to evaluate the effects of prevention and treatment. The result of the minimum prophylactic dose of the IgY showed that the protection rate was 90.9% when 2.5 mg was administrated. Results of the prevention and the treatment experiments showed prevention and cure rates of over 80% when yolk antibody was administered in the early stages of the GAstV infection. These results suggested that the specific IgY obtained from immunized hens with the inactivated GAstV could be a novel strategy for preventing and treating GAstV infection.

16.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560743

RESUMO

The H9N2 subtype of avian influenza virus (AIV) has been reported to infect not only birds, but also humans. The hemagglutinin (HA) protein is the main surface antigen of AIV and plays an important role in the viral infection. For treatment strategies and vaccine development, HA protein has been an important target for the development of broadly neutralizing antibodies against influenza A virus. To investigate the vital target determinant cluster in HA protein in this work, HA gene was cloned and expressed in the prokaryotic expression vector pET28a. The spleen lymphocytes from BALC/c mice immunized with the purified recombinant HA protein were fused with SP2/0 cells. After Hypoxanthine-Aminopterin-Thymidine (HAT) medium screening and indirect ELISA detection, six hybridoma cell lines producing anti-HA monoclonal antibodies were screened. The gradually truncated HA gene expression and western blotting were used to identify their major locations in epitopes specific to these monoclonal antibodies. It was found that the epitopes were located in three areas: 112NVENLEEL119, 117EELRSLFS124, and 170PIQDAQ175. Epitope 112NVENLEEL119 has a partial amino acid crossover with 117EELRSLFS124, which is located in the vestigial esterase domain "110-helix" of HA, and the monoclonal antibody recognizing these epitopes showed the neutralizing activity, suggesting that the region 112NVENLEELRSLFS124 might be a novel neutralizing epitope. The results of the homology analysis showed that these three epitopes were generally conserved in H9N2 subtype AIV, and will provide valuable insights into H9N2 vaccine design and improvement, as well as antibody-based therapies for treatment of H9N2 AIV infection.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Humanos , Animais , Camundongos , Epitopos , Vírus da Influenza A Subtipo H9N2/genética , Hemaglutininas , Esterases , Anticorpos Monoclonais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Anticorpos Antivirais , Galinhas
17.
Bioresour Technol ; 364: 128055, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191754

RESUMO

Microbial interactions between Anammox and heterotrophic bacteria in different granule distributions in an Anammox system (AMX) and partial denitrification coupled with Anammox system (PDA) were analyzed in this paper. Candidatus Brocadia was the main Anammox microorganism in granules of 1.0 > d > 0.5 mm with the highest abundance of 21.5 % in AMX, significantly higher than the maximum proportion of 2.3 % in PDA sludge > 2.0 mm. However, the total nitrogen (TN) removal of 77.9 % in AMX was lower than PDA (94.0 %) because of the excessive NO3--N generated by nitrite-oxidizing bacteria (NOB). Anammox activity could be stimulated by heterotrophs via simple organic carbon, which decreased with the increasing size of sludge in AMX but increased in PDA. This highlighted that regulation of the distribution of sludge size and organic carbon source had an essential effect on efficient nitrogen removal of Anammox technology.

18.
Bioresour Technol ; 364: 128135, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36257527

RESUMO

Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.

19.
J Am Chem Soc ; 144(41): 19106-19114, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36196871

RESUMO

It remains a challenge for platinum-based oxygen reduction reaction catalysts to simultaneously possess high mass activity and high durability in proton-exchange-membrane fuel cells. Herein, we report ultrathin holey nanotube (UHT)-structured Pt-M (M = Ni, Co) alloy catalysts that achieve unprecedented comprehensive performance. The nanotubes have ultrathin walls of 2-3 nm and construct self-supporting network-like catalyst layers with thicknesses of less than 1 µm, which have efficient mass transfer and 100% surface exposure, thus enabling high utilization of Pt atoms. Combined with the high intrinsic activity produced by the alloying effect, the catalysts achieve high mass activity. Moreover, the nanotube structure not only avoids the agglomeration problem of nanoparticles, but the low curvature of the tube wall also gives UHT a low surface energy (less than 1/3 of that of the same size nanoparticle), so UHT is more resistant to the Ostwald ripening and is stable. For the first time, the U.S. DOE mass activity target and dual durability targets for load and start-stop cycles are achieved on one catalyst. This study provides an effective structural strategy for the preparation of electrocatalysts with high atomic efficiency and excellent durability.

20.
Viruses ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016436

RESUMO

Avian influenza caused by H9N2 subtype avian influenza virus (AIV) poses a great threat to the healthy development of the poultry industry. Vimentin is closely related to intracellular lipid metabolism, which plays an important role during the viral infection process. However, the function of lipid metabolism and vimentin on H9N2 AIV replication is unclear. In this paper, the cholesterol level and 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGCR) phosphorylation were investigated in vimentin knockout (KO) and human cervical carcinoma cells (HeLa) cell with or without AIV infection. The results showed that compared to the control group without infected with H9N2 subtype AIV, the cholesterol contents were significantly increased, while HMGCR phosphorylation level was reduced in both KO and HeLa cell after virus infection. Furthermore, viral replication was significantly inhibited in the cells treated with the cholesterol inhibitor lovastatin. Compared with the control group, adenylate activated protein kinase (AMPK), a kinase regulating HMGCR enzymatic activity was inhibited in both KO and HeLa cells in the infected virus group, and AMPK phosphorylation levels were significantly lower in KO HeLa cell than that of HeLa cells. Additionally, after MßCD treatment, viral hemagglutinin (HA) gene level was significantly decreased in HeLa cells, while it was significantly increased in KO HeLa cells. In addition, vimentin expression was significantly increased in MßCD-treated HeLa cells with the viral infection and returned to normal levels after exogenous cholesterol to backfill the MßCD-treated cells. Therefore, the disruption of lipid rafts during the binding phase of viral invasion of cells significantly reduced viral infection. These studies indicated that the lipid rafts and cholesterol levels might be critical for H9N2 subtype AIV infection of human-derived cells and that vimentin might play an important role in the regulation of lipids on viral replication, which provided an important antiviral target against influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Proteínas Quinases Ativadas por AMP , Animais , Galinhas , Células HeLa , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Metabolismo dos Lipídeos , Vimentina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA