Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8440, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590020

RESUMO

Aneuploidy is one of the main causes of fetal and embryonic mortality in mammals. Nonetheless, its incidence in domestic ruminants has been investigated little. Indeed, no incidence data have ever been reported for water buffalo. To establish the incidence of aneuploidy in this species, we analysed in vitro matured metaphase II (MII) oocytes with corresponding first polar bodies (I PB) of the river (2n = 50) and swamp (2n = 48) buffaloes. For the first time, six river type probes (corresponding to chromosomes 1-5 and heterosome X), were tested on swamp buffalo metaphases using Multicolor-Fluorescent In Situ Hybridization (M-FISH) before their use on oocytes MII metaphases. Of the 120 total Cumulus Oocyte Complexes (COCs, 60 for each buffalo type) subjected to in vitro maturation, 104 reached the MII stage and were analysed by M-FISH. Haploid chromosome arrangement and visible I PB were observed in 89 of the oocytes (45 in river and 44 in swamp type). In the river type, the analysis revealed one oocyte was disomic for the chromosome X (2.22%). In the swamp type, one oocyte was found to be nullisomic for chromosome X (2.27%); another was found to be nullisomic for chromosome 5 (2.27%). We also observed one oocyte affected by a premature separation of sister chromatids (PSSC) on the chromosome X (2.27%). In both buffalo types, no abnormalities were detected in other investigated chromosomes. Based on merged data, the overall aneuploidy rate for the species was 3.37%. Oocytes with unreduced chromosomes averaged 1.92% across the two types, with 1.96% in river and 1.88% in swamp. The interspecies comparison between these data and cattle and pig published data revealed substantial difference in both total aneuploidy and diploidy rates. Reducing the negative impact of the meiotic segregation errors on the fertility is key to more sustainable breeding, an efficient embryo transfer industry and ex-situ bio-conservation. In this respect, additional M-FISH studies are needed on oocytes of domestic species using larger sets of probes and/or applying next generation sequencing technologies.


Assuntos
Bison , Búfalos , Aneuploidia , Animais , Búfalos/genética , Bovinos , Hibridização in Situ Fluorescente , Oócitos , Rios , Suínos , Cromossomo X
2.
Asian-Australas J Anim Sci ; 29(10): 1407-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26954139

RESUMO

Isolation and culture of spermatogonial stem cells (SSCs) are attractive for production of genetic modified offspring. In the present study, buffalo spermatogonial stem-like cells were isolated, cultured and expression pattern of different germ cell marker genes were determined. To recover spermatogonia, testes from age 3 to 7 months of buffalo were decapsulated, and seminiferous tubules were enzymatically dissociated. Two types of cells, immature sertoli cell and type A spermatogonia were observed in buffalo testes in this stage. Germ cell marker genes, OCT3/4 (Pou5f1), THY-1, c-kit, PGP9.5 (UCHL-1) and Dolichos biflorus agglutinin, were determined to be expressed both in mRNA and protein level by reverse transcription polymerase chain reaction and immunostaining in buffalo testes and buffalo spermatogonial stem-like cells, respectively. In the following, when the isolated buffalo buffalo spermatogonial stem-like cells were cultured in the medium supplemented 2.5% fetal bovine serum and 40 ng/mL glial cell-derived neurotrophic factor medium, SSCs proliferation efficiency and colony number were significantly improved than those of other groups (p<0.05). These findings may help in isolation and establishing long term in vitro culture system for buffalo spermatogonial stem-like cells, and accelerating the generation of genetic modified buffaloes.

3.
Int J Mol Sci ; 14(4): 8179-87, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23591837

RESUMO

MicroRNAs (miRNAs) are small, non-coding, endogenous RNA molecules that play important roles in a variety of normal and diseased biological processes by post-transcriptionally regulating the expression of target genes. They can bind to target messenger RNA (mRNA) transcripts of protein-coding genes and negatively control their translation or cause mRNA degradation. miRNAs have been found to actively regulate a variety of cellular processes, including cell proliferation, death, and metabolism. Therefore, their study is crucial for the better understanding of cellular functions in eukaryotes. To better understand the mechanisms of miRNA: mRNA interaction and their cellular functions, it is important to identify the miRNA targets accurately. In this paper, we provide a brief review for the advances in the animal miRNA target prediction methods and available resources to facilitate further study of miRNAs and their functions.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Bases de Dados de Ácidos Nucleicos , Epigenômica/métodos , Epigenômica/tendências , Técnicas Genéticas/tendências , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA