Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39244797

RESUMO

Zinc is a significant source of heavy metal pollution that poses risks to both human health and biodiversity. Excessive concentrations of zinc can hinder the growth and development of insects and trigger cell death through oxidative damage. The midgut is the main organ affected by exposure to heavy metals. The silkworm, a prominent insect species belonging to the Lepidoptera class and widely used in China, serves as a model for studying the genetic response to heavy metal stress. In this study, high-throughput sequencing technology was employed to investigate detoxification-related genes in the midgut that are induced by zinc exposure. A total of 11,320 unigenes and 14,723 transcripts were identified, with 553 differentially expressed genes (DEGs) detected, among which 394 were up-regulated and 159 were down-regulated. The Gene Ontology (GO) analysis revealed that 452 DEGs were involved in 18 biological process subclasses, 14 cellular component subclasses and 8 molecular functional subclasses. Furthermore, the KEGG analysis demonstrated enrichment in pathways such as Protein digestion, absorption and Lysosome. Validation of the expression levels of 9 detoxification-related DEGs through qRT-PCR confirmed the accuracy of the RNA-seq results. This study not only contributes new insights into the detoxification mechanisms mechanism of silkworms against zinc contamination, but also serves as a foundation basis for understanding the molecular detoxification processes in lepidopteran insects.

2.
Int J Neuropsychopharmacol ; 27(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39185814

RESUMO

BACKGROUND: Depression is a heterogeneous disorder with high morbidity and disability rates that poses serious problems regarding mental health care. It is now well established that N-methyl D-aspartate receptor (NMDAR) modulators are being increasingly explored as potential therapeutic options for treating depression, although relatively little is known about their mechanisms of action. NMDARs are glutamate-gated ion channels that are ubiquitously expressed in the central nervous system (CNS), and they have been shown to play key roles in excitatory synaptic transmission. GluN2A, the predominant Glu2N subunit of functional NMDARs in neurons, is involved in various physiological processes in the CNS and is associated with diseases such as anxiety, depression, and schizophrenia. However, the role of GluN2A in the pathophysiology of depression has not yet been elucidated. METHODS: We reviewed several past studies to better understand the function of GluN2A in depression. Additionally, we also summarized the pathogenesis of depression based on the regulation of GluN2A expression, particularly its interaction with neuroinflammation and neurogenesis, which has received considerable critical attention and is highly implicated in the onset of depression. RESULTS: These evidence suggests that GluN2A overexpression impairs structural and functional synaptic plasticity, which contributes to the development of depression. Consequently, this knowledge is vital for the development of selective antagonists targeting GluN2A subunits using pharmacological and molecular methods. CONCLUSIONS: Specific inhibition of the GluN2A NMDAR subunit is resistant to chronic stress-induced depressive-like behaviors, making them promising targets for the development of novel antidepressants.


Assuntos
Antidepressivos , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Antidepressivos/farmacologia , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Desenvolvimento de Medicamentos , Neurogênese/efeitos dos fármacos
3.
Front Immunol ; 15: 1411936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108270

RESUMO

Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.


Assuntos
Astacoidea , Imunidade Inata , Filogenia , Animais , Astacoidea/imunologia , Astacoidea/genética , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-39191144

RESUMO

Procambarus clarkii is an economically important species in China; however, its high mortality rate due to pathogenic bacteria, particularly Vibrio parahaemolyticus, results in significant economic loss. This study aimed to understand the immune response of crayfish to bacterial infection by comparing and analyzing transcriptome data of hepatopancreatic tissue from P. clarkii challenged with V. parahaemolyticus or treated with PBS. Physiological indices (TP, Alb, ACP, and AKP) were analyzed, and tissue sections were prepared. After assembling and annotating the data, 18,756 unigenes were identified. A comparison of the expression levels of these unigenes between the control and V. parahaemolyticus groups revealed 4037 DEGs, with 2278 unigenes upregulated and 1759 downregulated in the V. parahaemolyticus group. GO (Gene Ontology) enrichment analysis shows that the DGEs are mainly enriched in cellular anatomical activity, bindinga and cellular process, enrichment analysis of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways showed that DGEs were mainly enriched in Base excision repair, Phagosome and Longevity regulating pathway. At the same time, lysosome was also enriched. The phagosome and lysosome pathways play a crucial role in the immune defense of crayfish against V. parahaemolyticus injection that will be highlighted. In addition, the expression levels of six selected immune-related DEGs were measured using qRT-PCR, which validated the results of RNA-seq analysis. This study provides a new perspective on the immune system and defense mechanisms of P. clarkii and a valuable foundation for further investigation of the molecular immune mechanisms of this species.

5.
Int J Biol Macromol ; 277(Pt 2): 134231, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074699

RESUMO

To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.


Assuntos
Sistema Enzimático do Citocromo P-450 , Xenobióticos , ortoaminobenzoatos , Animais , ortoaminobenzoatos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/metabolismo , Inativação Metabólica/genética , Astacoidea/genética , Astacoidea/efeitos dos fármacos , Astacoidea/metabolismo , Transcriptoma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Perfilação da Expressão Gênica , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
6.
Animal Model Exp Med ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017036

RESUMO

BACKGROUND: The role of Claudin-1 in tongue squamous cell carcinoma (TSCC) metastasis needs further clarification, particularly its impact on cell migration. Herein, our study aims to investigate the role of Claudin-1 in TSCC cell migration and its underlying mechanisms. METHODS: 36 TSCC tissue samples underwent immunohistochemical staining for Claudin-1. Western blotting and immunofluorescence analyses were conducted to evaluate Claudin-1 expression and distribution in TSCC cells. Claudin-1 knockdown cell lines were established using short hairpin RNA transfection. Migration effects were assessed through wound healing assays. Furthermore, the expression of EMT-associated molecules was measured via western blotting. RESULTS: Claudin-1 expression decreased as TSCC malignancy increased. Adenosine monophosphate-activated protein kinase (AMPK) activation led to increased Claudin-1 expression and membrane translocation, inhibiting TSCC cell migration and epithelial-mesenchymal transition (EMT). Conversely, Claudin-1 knockdown reversed these inhibitory effects on migration and EMT caused by AMPK activation. CONCLUSIONS: Our results indicated that AMPK activation suppresses TSCC cell migration by targeting Claudin-1 and EMT pathways.

7.
Eur J Med Chem ; 276: 116678, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029337

RESUMO

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.


Assuntos
Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias/tratamento farmacológico , Animais , Estrutura Molecular
8.
Eur J Med Chem ; 276: 116694, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39047607

RESUMO

As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.


Assuntos
Antineoplásicos , Via de Sinalização Hippo , Neoplasias , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Pestic Biochem Physiol ; 202: 105967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879344

RESUMO

Coumarin is a natural product known for its diverse biological activities. While its antifungal properties in agricultural chemistry have been extensively studied, there is limited research on its antibacterial potential. In this study, we developed several novel coumarin derivatives by combining coumarin with pyridinium salt through molecular hybridization and chemical synthesis. Our findings reveal that most of these derivatives exhibit promising antibacterial activity. Among them, derivative A25 has been identified as the most effective compound based on three-dimensional quantitative structure-activity relationships. It demonstrates significant in vitro and in vivo activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc), and Xanthomonas campestris pv. citri (Xac), outperforming the commercially available thiediazole copper. Initial investigations into its mechanism of action suggest that A25 disrupts the cell membranes of Xoc and Xoo, thereby inhibiting bacterial growth. Additionally, A25 enhances the activity of defense enzymes in rice and modulates the expression of proteins related to the pyruvate metabolism pathway. This dual action contributes to rice's resistance against bacterial infestation. We anticipate that this study will serve as a foundation for the development of coumarin-based bactericides.


Assuntos
Antibacterianos , Cumarínicos , Testes de Sensibilidade Microbiana , Oryza , Xanthomonas , Cumarínicos/farmacologia , Cumarínicos/síntese química , Cumarínicos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Xanthomonas/efeitos dos fármacos , Oryza/microbiologia , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Compostos de Piridínio/síntese química , Xanthomonas campestris/efeitos dos fármacos , Desenho de Fármacos , Sais/farmacologia , Sais/química , Relação Estrutura-Atividade
10.
Animals (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38929441

RESUMO

Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.

11.
Ann Surg Oncol ; 31(9): 5615-5630, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879668

RESUMO

INTRODUCTION: Despite the increasing widespread adoption and experience in minimally invasive liver resections (MILR), open conversion occurs not uncommonly even with minor resections and as been reported to be associated with inferior outcomes. We aimed to identify risk factors for and outcomes of open conversion in patients undergoing minor hepatectomies. We also studied the impact of approach (laparoscopic or robotic) on outcomes. METHODS: This is a post-hoc analysis of 20,019 patients who underwent RLR and LLR across 50 international centers between 2004-2020. Risk factors for and perioperative outcomes of open conversion were analysed. Multivariate and propensity score-matched analysis were performed to control for confounding factors. RESULTS: Finally, 10,541 patients undergoing either laparoscopic (LLR; 89.1%) or robotic (RLR; 10.9%) minor liver resections (wedge resections, segmentectomies) were included. Multivariate analysis identified LLR, earlier period of MILR, malignant pathology, cirrhosis, portal hypertension, previous abdominal surgery, larger tumor size, and posterosuperior location as significant independent predictors of open conversion. The most common reason for conversion was technical issues (44.7%), followed by bleeding (27.2%), and oncological reasons (22.3%). After propensity score matching (PSM) of baseline characteristics, patients requiring open conversion had poorer outcomes compared with successful MILR cases as evidenced by longer operative times, more blood loss, higher requirement for perioperative transfusion, longer duration of hospitalization and higher morbidity, reoperation, and 90-day mortality rates. CONCLUSIONS: Multiple risk factors were associated with conversion of MILR even for minor hepatectomies, and open conversion was associated with significantly poorer perioperative outcomes.


Assuntos
Conversão para Cirurgia Aberta , Hepatectomia , Laparoscopia , Neoplasias Hepáticas , Procedimentos Cirúrgicos Robóticos , Humanos , Masculino , Feminino , Hepatectomia/métodos , Hepatectomia/mortalidade , Laparoscopia/métodos , Pessoa de Meia-Idade , Conversão para Cirurgia Aberta/estatística & dados numéricos , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Idoso , Seguimentos , Complicações Pós-Operatórias/epidemiologia , Fatores de Risco , Duração da Cirurgia , Prognóstico , Tempo de Internação/estatística & dados numéricos , Estudos Retrospectivos
12.
ACS Appl Mater Interfaces ; 16(24): 31348-31362, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38833382

RESUMO

Today's computing systems, to meet the enormous demands of information processing, have driven the development of brain-inspired neuromorphic systems. However, there are relatively few optoelectronic devices in most brain-inspired neuromorphic systems that can simultaneously regulate the conductivity through both optical and electrical signals. In this work, the Au/MXene/Y:HfO2/FTO ferroelectric memristor as an optoelectronic artificial synaptic device exhibited both digital and analog resistance switching (RS) behaviors under different voltages with a good switching ratio (>103). Under optoelectronic conditions, optimal weight update parameters and an enhanced algorithm achieved 97.1% recognition accuracy in convolutional neural networks. A new logic gate circuit specifically designed for optoelectronic inputs was established. Furthermore, the device integrates the impact of relative humidity to develop an innovative three-person voting mechanism with a veto power. These results provide a feasible approach for integrating optoelectronic artificial synapses with logic-based computing devices.

13.
Viruses ; 16(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38793618

RESUMO

Viral infection can regulate the cell cycle, thereby promoting viral replication. Hijacking and altering the cell cycle are important for the virus to establish and maintain a latent infection. Previously, Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV)-latently infected P8-Se301-C1 cells, which grew more slowly than Se301 cells and interfered with homologous SeMNNPV superinfection, were established. However, the effects of latent and superinfection with baculoviruses on cell cycle progression remain unknown. In this study, the cell cycle profiles of P8-Se301-C1 cells and SeMNPV or Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected P8-Se301-C1 cells were characterized by flow cytometry. The results showed that replication-related genes MCM4, PCNA, and BAF were down-regulated (p < 0.05) in P8-Se301-C1 cells, and the S phase of P8-Se301-C1 cells was longer than that of Se301 cells. P8-Se301-C1 cells infected with SeMNPV did not arrest in the G2/M phase or affect the expression of Cyclin B and cyclin-dependent kinase 1 (CDK1). Furthermore, when P8-Se301-C1 cells were infected with SeMNPV after synchronized treatment with hydroxyurea and nocodazole, light microscopy and qRT-PCR analysis showed that, compared with unsynchronized cells and S and G2/M phase cells, SeMNPV-infected P8-Se301-C1 cells in G1 phase induced G2/M phase arrest, and the amount of virus adsorption and intracellular viral DNA replication were significantly increased (p < 0.05). In addition, budded virus (BV) production and occlusion body (OB)-containing cells were both increased at 120 h post-infection (p < 0.05). The expression of Cyclin B and CDK1 was significantly down-regulated at 48 h post-infection (p < 0.05). Finally, the arrest of SeMNPV-infected G1 phase cells in the G2/M phase increased BV production (p < 0.05) and the number of OB-containing cells. In conclusion, G1 phase infection and G2/M arrest are favorable to SeMNPV proliferation in P8-Se301-C1 cells, thereby alleviating the homologous superinfection exclusion. The results contribute to a better understanding of the relationship between baculoviruses and insect cell cycle progression and regulation.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular , Nucleopoliedrovírus , Spodoptera , Superinfecção , Replicação Viral , Animais , Nucleopoliedrovírus/fisiologia , Linhagem Celular , Spodoptera/virologia , Superinfecção/virologia , Fase G1
14.
Sci Total Environ ; 931: 172866, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705291

RESUMO

Tetracycline antibiotics (TCs) are extensively used in clinical medicine, animal husbandry, and aquaculture because of their cost-effectiveness and high antibacterial efficacy. However, the presence of TCs residues in the environment poses risks to humans. In this study, an inner filter effect (IFE) fluorescent probe, 2,2'-(ethane-1,2-diylbis((2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)azanediyl))diacetic acid (MQDA), was developed for the rapid detection of Eu3+ within 30 s. And its complex [MQDA-Eu3+] was successfully used for the detection of TCs. Upon coordination of a carboxyl of MQDA with Eu3+ to form a [MQDA-Eu3+] complex, the carboxyl served as an antenna ligand for the effective detection of Eu3+ to intensify the emission intensity of MQDA via "antenna effect", the process was the energy absorbed by TCs via UV excitation was effectively transferred to Eu3+. Fluorescence quenching of the [MQDA-Eu3+] complex was caused by the IFE in multicolor fluorescence systems. The limits of detection of [MQDA-Eu3+] for oxytetracycline, chlorotetracycline hydrochloride, and tetracycline were 0.80, 0.93, and 1.7 µM in DMSO/HEPES (7:3, v/v, pH = 7.0), respectively. [MQDA-Eu3+] demonstrated sensitive detection of TCs in environmental and food samples with satisfactory recoveries and exhibited excellent imaging capabilities for TCs in living cells and zebrafish with low cytotoxicity. The proposed approach demonstrated considerable potential for the quantitative detection of TCs.


Assuntos
Antibacterianos , Európio , Corantes Fluorescentes , Antibacterianos/análise , Corantes Fluorescentes/química , Európio/química , Tetraciclina/análise , Tetraciclinas/análise , Animais , Poluentes Químicos da Água/análise , Fluorescência , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos
15.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607116

RESUMO

Compared with purely electrical neuromorphic devices, those stimulated by optical signals have gained increasing attention due to their realistic sensory simulation. In this work, an optoelectronic neuromorphic device based on a photoelectric memristor with a Bi2FeCrO6/Al-doped ZnO (BFCO/AZO) heterostructure is fabricated that can respond to both electrical and optical signals and successfully simulate a variety of synaptic behaviors, such as STP, LTP, and PPF. In addition, the photomemory mechanism was identified by analyzing the energy band structures of AZO and BFCO. A convolutional neural network (CNN) architecture for pattern classification at the Mixed National Institute of Standards and Technology (MNIST) was used and improved the recognition accuracy of the MNIST and Fashion-MNIST datasets to 95.21% and 74.19%, respectively, by implementing an improved stochastic adaptive algorithm. These results provide a feasible approach for future implementation of optoelectronic synapses.

16.
Mater Horiz ; 11(12): 2886-2897, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563639

RESUMO

Neuromorphic computing, which mimics biological neural networks, is widely regarded as the optimal solution for addressing the limitations of traditional von Neumann computing architecture. In this work, an adjustable multistage resistance switching ferroelectric Bi2FeCrO6 diode artificial synaptic device was fabricated using a sol-gel method with a simple process. The device exhibits nonlinearity in its electrical characteristics, demonstrating tunable multistage resistance switching behavior and a strong ferroelectric diode effect through the manipulation of ferroelectric polarization. One of its salient advantages resides in its capacity to dynamically regulate its polarization state in response to an external electric field, thereby facilitating the fine-tuning of synaptic connection strength while maintaining synaptic stability. The device is capable of accurately simulating the fundamental properties of biological synapses, including long/short-term plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity. Additionally, the device exhibits a distinctive photoelectric response and is capable of inducing synaptic plasticity by light signal activation. The utilization of a femtosecond laser for the scrutiny of carrier transport mechanisms imparts profound insights into the intricate dynamics governing the optical memory effect. Furthermore, utilizing a convolutional neural network (CNN) architecture, the recognition accuracy of the MNIST and fashion MNIST datasets was improved to 95.6% and 78%, respectively, through the implementation of improved random adaptive algorithms. These findings present a new opportunity for utilizing Bi2FeCrO6 materials in the development of artificial synapses for neuromorphic computation.

17.
J Agric Food Chem ; 72(18): 10195-10205, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662962

RESUMO

The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 µg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 µg/mL) and allicin (8.40, 28.22, and 88.04 µg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.


Assuntos
Antibacterianos , Benzofuranos , Dissulfetos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Xanthomonas , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Xanthomonas/efeitos dos fármacos , Dissulfetos/química , Dissulfetos/farmacologia , Doenças das Plantas/microbiologia , Relação Quantitativa Estrutura-Atividade , Estrutura Molecular , Xanthomonas axonopodis/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oryza/microbiologia , Oryza/química
19.
Biomed Environ Sci ; 37(1): 3-18, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38326717

RESUMO

Objective: This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods: We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength. Results: In the multimetal linear regression, Cu (ß = -2.119), As (ß = -1.318), Sr (ß = -2.480), Ba (ß = 0.781), Fe (ß = 1.130) and Mn (ß = -0.404) were significantly correlated with grip strength ( P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval: -1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn ( P interactions of 0.003 and 0.018, respectively). Conclusion: In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.


Assuntos
Arsênio , Metais , Estudos Transversais , Teorema de Bayes , China/epidemiologia , Metais/toxicidade , Estrôncio
20.
Phytomedicine ; 126: 155177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412667

RESUMO

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Assuntos
Ataxia Telangiectasia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/uso terapêutico , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA