Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Bioorg Med Chem Lett ; 98: 129577, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065293

RESUMO

Transient receptor potential vanilloid 3 (TRPV3) channel is a temperature-sensitive and Ca2+-permeable nonselective cation channel, which is abundantly expressed in skin keratinocyte and plays an important role in skin homeostasis and repair. However, only a few TRPV3 inhibitors were reported. Few selective and potent modulators of the TRPV3 channel have hindered the progress of the investigation and clinical application. TRPV3 channel research still faces challenges and requires the new inhibitors. Flavonoids are a kind of natural compounds with various biological and pharmacological activities including anti-inflammatory and anti allergic effects, which is associated with some physiological effects mediated by TRPV3 channel. Herein, our group designed and synthesized a range of flavone derivatives, and investigated their inhibitory properties on the human TRPV3 channel by electrophysiology technique. Then, we identified a new potent TRPV3 antagonist 2d with IC50 of 0.62 µM. It also showed good selectivity on TRPV1, TRPV4, TRPA1 and TRPM8.


Assuntos
Flavonas , Canais de Potencial de Receptor Transitório , Humanos , Flavonas/farmacologia , Queratinócitos , Temperatura , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Cátion TRPV
2.
Front Genet ; 14: 1212465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359371

RESUMO

Background: Pyroptosis is essential for the remodeling of tumor immune microenvironment and suppression of tumor development. However, there is little information available about pyroptosis-related gene polymorphisms in non-small cell lung cancer (NSCLC). Methods: Six SNPs in the GSDMB, GSDMC, and AIM2 were genotyped in 650 NSCLC cases and 650 healthy controls using a MassARRAY platform. Results: Minor alleles of rs8067378, rs2305480, and rs77681114 were associated with a lower risk of NSCLC (p < 0.005), whereas rs2290400 and rs1103577 were related to an increased risk (p < 0.00001). Moreover, rs8067378-AG/GG, rs2305480-GA/AA, and rs77681114-GA/AA genotypes were associated with a decrease in NSCLC risk (p < 0.005). In contrast, the TC/CC genotypes of rs2290400 and rs1103577 were associated with an elevated NSCLC risk (p < 0.0001). Based on the analysis of genetic models, minor alleles of rs8067378, rs2305480 and rs77681114 were related to reduced risk of NSCLC (p < 0.05); whereas rs2290400 and rs1103577 were related to increased risk (p < 0.01). Conclusion: Our findings provided new insights into the roles of pyroptosis-related genes in NSCLC, as well as new factors to be considered for assessing the risk of developing this cancer.

3.
Exp Ther Med ; 26(1): 331, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37346407

RESUMO

Esophageal carcinoma (ESCA) is one of the most common malignancies in the world, and has high morbidity and mortality rates. Necrosis and long noncoding RNAs (lncRNAs) are involved in the progression of ESCA; however, the specific mechanism has not been clarified. The aim of the present study was to investigate the role of necrosis-related lncRNAs (nrlncRNAs) in patients with ESCA by bioinformatics analysis, and to establish a nrlncRNA model to predict ESCA immune infiltration and prognosis. To form synthetic matrices, ESCA transcriptome data and related information were obtained from The Cancer Genome Atlas. A nrlncRNA model was established by coexpression, univariate Cox (Uni-Cox), and least absolute shrinkage and selection operator analyses. The predictive ability of this model was evaluated by Kaplan-Meier, receiver operating characteristic (ROC) curve, Uni-Cox, multivariate Cox regression, nomogram and calibration curve analyses. A model containing eight nrlncRNAs was generated. The areas under the ROC curves for 1-, 3- and 5-year overall survival were 0.746, 0.671 and 0.812, respectively. A high-risk score according to this model could be used as an indicator for systemic therapy use, since the half-maximum inhibitory concentration values varied significantly between the high-risk and low-risk groups. Based on the expression of eight prognosis-related nrlncRNAs, the patients with ESCA were regrouped using the 'ConsensusClusterPlus' package to explore potential molecular subgroups responding to immunotherapy. The patients with ESCA were divided into three clusters based on the eight nrlncRNAs that constituted the risk model: The most low-risk group patients were classified into cluster 1, and the high-risk group patients were mainly concentrated in clusters 2 and 3. Survival analysis showed that Cluster 1 had a better survival than the other groups (P=0.016). This classification system could contribute to precision treatment. Furthermore, two nrlncRNAs (LINC02811 and LINC00299) were assessed in the esophageal epithelial cell line HET-1A, and in the human esophageal cancer cell lines KYSE150 and TE1. There were significant differences in the expression levels of these lncRNAs between tumor and normal cells. In conclusion, the present study suggested that nrlncRNA models may predict the prognosis of patients with ESCA, and provide guidance for immunotherapy and chemotherapy decision making. Furthermore, the present study provided strategies to promote the development of individualized and precise treatment for patients with ESCA.

4.
Cancer Sci ; 114(7): 2951-2960, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37158138

RESUMO

D-1553 is a small molecule inhibitor selectively targeting KRASG12C and currently in phase II clinical trials. Here, we report the preclinical data demonstrating antitumor activity of D-1553. Potency and specificity of D-1553 in inhibiting GDP-bound KRASG12C mutation were determined by thermal shift assay and KRASG12C -coupled nucleotide exchange assay. In vitro and in vivo antitumor activity of D-1553 alone or in combination with other therapies were evaluated in KRASG12C mutated cancer cells and xenograft models. D-1553 showed selective and potent activity against mutated GDP-bound KRASG12C protein. D-1553 selectively inhibited ERK phosphorylation in NCI-H358 cells harboring KRASG12C mutation. Compared to the KRAS WT and KRASG12D cell lines, D-1553 selectively inhibited cell viability in multiple KRASG12C cell lines, and the potency was slightly superior to sotorasib and adagrasib. In a panel of xenograft tumor models, D-1553, given orally, showed partial or complete tumor regression. The combination of D-1553 with chemotherapy, MEK inhibitor, or SHP2 inhibitor showed stronger potency on tumor growth inhibition or regression compared to D-1553 alone. These findings support the clinical evaluation of D-1553 as an efficacious drug candidate, both as a single agent or in combination, for patients with solid tumors harboring KRASG12C mutation.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia
5.
Anticancer Drugs ; 33(9): 975-978, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946538

RESUMO

The reason that immune checkpoint inhibitors have not been widely applied to pancreatic cancer treatment is probably because of low immunogenicity or dense stromal fibrosis. Recently, only pembrolizumab was recommended for DNA mismatch repair deficiency or high microsatellite instability by National Comprehensive Cancer Network guideline. Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer, with a poor overall survival rate, the value of immunotherapy for PDAC needs more research. Here, we report a 56-year-old man suffered from PDAC with liver metastasis after radical surgery. The next-generation sequencing result demonstrated that it had remarkably high tumor mutational burden (TMB) of 49.92 Muts/Mb and microsatellite stability. Sintilimab (anti-PD-1) monotherapy was continuously administrated after failure of combined chemotherapy in second line, achieving stable disease within 22 months and few immunotherapy-related adverse events. To our knowledge, this is the first time to report a good outcome achieving 22 months with progression-free survival after PDAC metastasis with monotherapy of sintilimab. TMB may serve as a potential efficacy-related predictor in PDAC patients with sintilimab and help physicians make optimum clinical strategy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anticorpos Monoclonais Humanizados , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , DNA , Humanos , Inibidores de Checkpoint Imunológico , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
6.
J Healthc Eng ; 2022: 4357915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310178

RESUMO

Objective: The aim of this study is to explore the effect of conventional nursing combined with bedtime oculomotor training on sleep quality and body immune of advanced lung cancer patients. Methods: By means of a retrospective study, 120 advanced lung cancer patients admitted to our hospital from January 2019 to January 2020 were selected as the research subject and divided into the intervention group (PSQI (Pittsburgh Sleep Quality Index) score≥10 points, n = 60) and the control group (PSQI score<10 points, n = 60). Conventional nursing was performed to the control group, and an eye movement exercise before sleep was added additionally in the intervention group, 30 min each time, once a day, and 5 times a week for 3 months, so as to compare their sleep quality, body immunity indexes, negative emotion scores, adverse reaction rate (ARR), quality of life, and satisfaction with nursing. Results: After nursing, the intervention group obtained a significantly lower PSQI score (5.54 ± 1.23 VS 7.98 ± 1.65, P < 0.05), better body immunity indexes (P < 0.001), lower negative emotion scores (P < 0.05), lower ARR (P < 0.05), better quality of life (P < 0.001), and higher satisfaction with nursing (P < 0.05) than the control group. Conclusion: Combining conventional nursing with the eye movement exercise before sleep can alleviate negative emotions, improve the sleep quality, promote body immunity, and reduce the ARR, which is more satisfying to patients and should be applied and promoted in practice.


Assuntos
Neoplasias Pulmonares , Qualidade do Sono , Movimentos Oculares , Humanos , Qualidade de Vida , Estudos Retrospectivos , Sono
7.
Onco Targets Ther ; 14: 3133-3149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012270

RESUMO

PURPOSE: Esophageal carcinoma is a common and highly metastatic malignant tumor of the digestive tract. The aim of the present study was to identify potential molecular markers of esophageal carcinoma that may help its diagnosis and treatment. MATERIALS AND METHODS: First, mRNA and DNA methylation data were downloaded from The Cancer Genome Atlas (TCGA) database for the identification of differentially expressed genes (DEGs) and DNA methylation analysis. Secondly, Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify important modules and hub genes. In addition, correlation analysis between DNA methylation genes and DEGs was performed. Thirdly, the GSE45670 dataset was used to validate the expression of the diagnostic and survival ability analysis of genes in TCGA data. Finally, reverse transcription-quantitative PCR and immunohistochemical analysis of genes were performed. RESULTS: A total of 2408 DEGs and 5134 differentially methylated sites were obtained. In the WGCNA analysis, the royal blue module was found to be the optimal module. In addition, hub genes in the module, including ESRRG, MFSD4, CCKBR, ATP4B, ESRRB, ATP4A, CCKAR and B3GAT1, were also differentially methylated genes and DEGs. It was found that CCKAR, MFSD4 and ESRRG may be diagnostic gene biomarkers for esophageal carcinoma. In addition, the high expression of MFSD4 was significantly correlated with patient survival. Immunohistochemistry analysis results showed that the gene expression levels of ATP4B, B3GAT1, CCKBR and ESRRG were decreased in esophageal carcinoma tissues, which was in line with the bioinformatics results. CONCLUSION: Therefore, these identified molecular markers may be helpful in the diagnosis and treatment of esophageal carcinoma.

8.
Theranostics ; 11(11): 5387-5403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859753

RESUMO

Background and Objective: Epigenetic alterations are common events in clear cell renal cell carcinoma (ccRCC), and protein arginine methyltransferase 1 (PRMT1) is an important epigenetic regulator in cancers. However, its role in ccRCC remains unclear. Methods: We investigated PRMT1 expression level and its correlations to clinicopathological factors and prognosis in ccRCC patients based on ccRCC tissue microarrays (TMAs). Genetic knockdown and pharmacological inhibition using a novel PRMT1 inhibitor DCPT1061 were performed to investigate the functional role of PRMT1 in ccRCC proliferation. Besides, we confirmed the antitumor effect of PRMT1 inhibitor DCPT1061 in ccRCC cell-derived tumor xenograft (CDX) models as well as patient-derived tumor xenograft (PDX) models. Results: We found PRMT1 expression was remarkably upregulated in tumor tissues and associated with poor pathologic characters and outcomes of ccRCC patients. Furthermore, genetic knockdown and pharmacological inhibition of PRMT1 by a novel potent inhibitor DCPT1061 dramatically induced G1 cell cycle arrest and suppressed ccRCC cell growth. Mechanistically, RNA sequencing and further validation identified Lipocalin2 (LCN2), a secreted glycoprotein implicated in tumorigenesis, as a crucial regulator of ccRCC growth and functional downstream effector of PRMT1. Epigenetic silencing of LCN2 autocrine secretion by PRMT1 deficiency decreased downstream p-AKT, leading to reduced p-RB and cell growth arrest through the neutrophil gelatinase associated lipocalin receptor (NGALR). Moreover, PRMT1 inhibition by DCPT1061 not only inhibited tumor growth but also sensitized ccRCC to sunitinib treatment in vivo by attenuating sunitinib-induced upregulation of LCN2-AKT-RB signaling. Conclusion: Taken together, our study revealed a PRMT1-dependent epigenetic mechanism in the control of ccRCC tumor growth and drug resistance, indicating PRMT1 may serve as a promising target for therapeutic intervention in ccRCC patients.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Animais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinoma de Células Renais/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Epigênese Genética/genética , Feminino , Fase G1/efeitos dos fármacos , Fase G1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Neoplasias Renais/tratamento farmacológico , Lipocalina-2/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Neutrófilos/efeitos dos fármacos , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sunitinibe/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
9.
Biosci Biotechnol Biochem ; 85(4): 805-813, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686397

RESUMO

PTEN/AKT signaling cascade is frequently activated in various cancers, including lung cancer. The downstream effector of this signaling cascade is poorly understood. ß-Thymosin 10 (TMSB10) functions as an oncogene or tumor suppressors in cancers, whereas its significance in lung cancer remains unknown. In this study, we showed that the activation of PTEN/AKT signaling promoted the expression of TMSB10. Based on the TCGA database, TMSB10 was upregulated in lung cancer tissues and its overexpression was correlated with poor prognosis of lung cancer patients. Functional experiments demonstrated that TMSB10 knockdown suppressed, while its overexpression promoted the proliferation, growth, and migration of lung cancer cells. Apoptosis and epithelial-mesenchymal transition were also regulated by TMSB10. We therefore suggest that TMSB10 is a novel oncogene for lung cancer. Targeting TMSB10 may benefit lung cancer patients with activated PTEN/AKT signaling.


Assuntos
Neoplasias Pulmonares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Timosina/fisiologia , Regulação para Cima , Apoptose/fisiologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Timosina/genética
10.
Oncol Lett ; 21(1): 6, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33240412

RESUMO

Human esophageal cancer (hESC) cell motility adopts various modes, resulting in hESC progression and poor survival. However, how tripartite motif 59 (TRIM59), as the ubiquitination machinery, participates in hESC metastasis is not completely understood. The results indicated that TRIM59 was aberrantly upregulated in hESC tissues compared with adjacent healthy esophageal tissues, which was associated with poor survival and advanced TNM state among patients with hESC. Moreover, patients with hESC with higher TRIM59 expression displayed undetectable p53 expression, which contributed to enhanced progression and motility of hESC. At the molecular level, TRIM59 was indicated to be an E3 putative ubiquitin ligase that targeted the p53 protein, leading to increased degradation of p53, which resulted in decreased chemosensitivity to cisplatin. TRIM59 knockdown reduced TRIM59 expression, increased p53 protein expression, and decreased hESC cell viability, clone formation and migration compared with the small interfering RNA negative control (siNC) group. Furthermore, hESC cell lines were more sensitive to cisplatin in the TRIM59-knockdown group compared with the siNC group. The results indicated a relationship between TRIM59, p53 and the chemosensitivity of cisplatin. The present study suggested that TRIM59 may serve as a promising prognostic indicator for patients with hESC.

11.
ACS Synth Biol ; 9(4): 883-892, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32197042

RESUMO

Aromatic N-oxides are valuable due to their versatile chemical, pharmaceutical, and agricultural applications. Natural phenazine N-oxides possess potent biological activities and can be applied in many ways; however, few N-oxides have been identified. Herein, we developed a microbial system to synthesize phenazine N-oxides via an artificial pathway. First, the N-monooxygenase NaphzNO1 was predicted and screened in Nocardiopsis sp. 13-12-13 through a product comparison and gene sequencing. Subsequently, according to similarities in the chemical structures of substrates, an artificial pathway for the synthesis of a phenazine N-oxide in Pseudomonas chlororaphis HT66 was designed and established using three heterologous enzymes, a monooxygenase (PhzS) from P. aeruginosa PAO1, a monooxygenase (PhzO) from P. chlororaphis GP72, and the N-monooxygenase NaphzNO1. A novel phenazine derivative, 1-hydroxyphenazine N'10-oxide, was obtained in an engineered strain, P. chlororaphis HT66-SN. The phenazine N-monooxygenase NaphzNO1 was identified by metabolically engineering the phenazine-producing platform P. chlororaphis HT66. Moreover, the function of NaphzNO1, which can catalyze the conversion of 1-hydroxyphenazine but not that of 2-hydroxyphenazine, was confirmed in vitro. Additionally, 1-hydroxyphenazine N'10-oxide demonstrated substantial cytotoxic activity against two human cancer cell lines, MCF-7 and HT-29. Furthermore, the highest microbial production of 1-hydroxyphenazine N'10-oxide to date was achieved at 143.4 mg/L in the metabolically engineered strain P3-SN. These findings demonstrate that P. chlororaphis HT66 has the potential to be engineered as a platform for phenazine-modifying gene identification and derivative production. The present study also provides a promising alternative for the sustainable synthesis of aromatic N-oxides with unique chemical structures by N-monooxygenase.


Assuntos
Engenharia Metabólica/métodos , Óxidos/metabolismo , Fenazinas/metabolismo , Pseudomonas chlororaphis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Pseudomonas chlororaphis/metabolismo
12.
Zhongguo Fei Ai Za Zhi ; 23(4): 223-232, 2020 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-32222154

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are non-coding small molecule RNAs that are widely found in eukaryotic organisms, although some miRNAs have been found in tumors, the expression and effects of miR-665 on small cell lung cancer (SCLC) are unclear. The aim of this study was to analyze the effects of miR-665 on proliferation, cycle, invasion and migration of SCLC cells, and to explore the role of miR-665 in SCLC and its working mechanism. METHODS: The expression of miR-665 in SCLC tissues and adjacent normal tissues was detected by qRT-PCR. TargetScan predicted potential target genes for miR-665 and validated with dual luciferase reporter assays, qRT-PCR and Western blot. CCK8 assay, flow cytometry, Transwell and wound healing assay to detect the effects of miR-665 and LLGL1 on proliferation, invasion, migration and S-phase fraction of SCLC cell line NCI-H446, NCI-H1688. A nude mouse xenograft model of SCLC was constructed and the effect of miR-665 on tumor growth in mice was observed. RESULTS: The expression of miR-665 in SCLC tissues was significantly higher than that in non-tumor normal tissues. MiR-665 could target 3'-UTR of LLGL1 and inhibit its expression. Compared with non-tumor normal tissues, the expression of LLGL1 was significantly lower in SCLC tissues. Inhibition of miR-665 expression could inhibit proliferation, S-phase fraction, invasion and migration ability of SCLC NCL-H446 cells, and interference LLGL1 expression could reverse this inhibition effect. Up-regulation of miR-665 expression could promoted proliferation, S-phase fraction, invasion and migration ability of SCLC NCI-H1688 cells, but this promotion effect was also reversed by overexpression of LLGL1. In a nude mouse xenograft model of SCLC, inhibition of miR-665 expression could up-regulate LLGL1 protein expression and inhibit tumor growth, while up-regulation of miR-665 expression could produce opposite results. CONCLUSIONS: The expression of miR-665 is closely related to SCLC. miR-665 can promote the biological behavior of SCLC cells by inhibiting the expression of target gene LLGL1, and miR-665 play a role in tumor-promoting genes in SCLC.


Assuntos
Proteínas do Citoesqueleto/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Invasividade Neoplásica , Fase S/genética , Regulação para Cima/genética
13.
Cancer Manag Res ; 11: 6175-6184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308753

RESUMO

BACKGROUND: Gastric cancer is still a common cancer worldwide. Investigation of potential plasma biomarkers for gastric cancer diagnosis is essential for prevention strategies and early intervention for gastric cancer-control planning. OBJECTIVES: This study was aimed to explore the lncRNAs' promoter of CDKN1A antisense DNA-damage-activated RNA (PANDAR), FOXD2-AS1, and SMARCC2 as potential novel diagnostic biomarkers for gastric cancer. METHOD: 109 gastric cancer patients and 106 healthy controls were involved in this study. Plasma lncRNAs PANDAR, FOXD2-AS1, and SMARCC2 were detected by real-time PCR. Student's t-test, Mann-Whitney U test, and Chi-square test were used to verify the differences of clinical variables between two groups. Receiver operating characteristic curve (ROC) was used to evaluate the diagnostic value of every biomarker. Multivariable analysis of risk factors for gastric cancer was performed using logistic regression analysis. RESULTS: There were significant differences in age, gender, carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 153 between gastric cancer and healthy controls (P<0.05). Compared with healthy subjects, the levels of plasma lncRNAs PANDAR, FOXD2-AS1, and SMARCC2 were all significantly higher in gastric cancer patients (P<0.05). These lncRNAs were significantly associated with clinicopathological parameters of gastric cancer, like pathological differentiation, TNM stage, and/or lymph nodes metastasis, and/or invasion depth (P<0.05). The AUC for lncRNA PANDAR was 0.767, for FOXD2-AS1 was 0.700, for SMARCC2 was 0.748, and the AUC of the combinative diagnostic value of these three lncRNAs was 0.839. Adjusted by other variables, these lncRNAs' expressions were significantly associated with gastric cancer. CONCLUSIONS: Plasma lncRNAs PANDAR, FOXD2-AS1, and SMARCC2 might be appropriate diagnostic biomarkers for gastric cancer.

14.
Bioorg Chem ; 86: 494-500, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30780018

RESUMO

Bromodomain PHD finger transcription factor (BPTF), a bromodomain-containing protein, plays a crucial role in the regulation of downstream gene expression through the specific recognition of lysine acetylation on bulk histones. The dysfunction of BPTF is closely involved with the development and progression of many human diseases, especially cancer. Therefore, BPTF bromodomain has become a promising drug target for epigenetic cancer therapy. However, unlike BET family inhibitors, few BPTF bromodomain inhibitors have been reported. In this study, by integrating docking-based virtual screening with biochemical analysis, we identified a novel selective BPTF bromodomain inhibitor DCB29 with the IC50 value of 13.2 ±â€¯1.6 µM by homogenous time-resolved fluorescence resonance energy transfer (HTRF) assays. The binding between DCB29 and BPTF was confirmed by NMR and SPR. Molecular docking disclosed that DCB29 occupied the pocket of acetylated H4 peptide substrate and provided detailed SAR explanations for its derivatives. Collectively, DCB29 presented great potential as a powerful tool for BPTF-related biological research and further medicinal chemistry optimization.


Assuntos
Álcoois/farmacologia , Benzamidas/farmacologia , Descoberta de Drogas , Fatores de Transcrição/antagonistas & inibidores , Álcoois/síntese química , Álcoois/química , Benzamidas/síntese química , Benzamidas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
15.
RSC Adv ; 9(9): 4917-4924, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35514635

RESUMO

The general control nonrepressed protein 5 (GCN5) is an important target for drug design and drug discovery largely owing to its pathogenic role in malignancies. Chemical probes that target GCN5 have been developed in recent decades, but their potencies are still unsatisfactory. In this study, through an in-house developed AlphaScreen-based high throughput screening platform, radioactive acetylation assays and 2D-similarity based analogue searching, we discovered DC_HG24-01 as the novel hGCN5 inhibitor with the IC50 value of 3.1 ± 0.2 µM. Further docking studies suggested that DC_HG24-01 could occupy the binding pocket of acetyl-CoA cofactor, which laid the foundation for the development of more potent hGCN5 inhibitors in the future. At the cellular level, DC_HG24-01 could retard cell proliferation and block the acetylation of H3K14 leading to cell apoptosis and cell cycle arrest at the G1 phase in MV4-11 cell lines. Taken together, the discovery of DC_HG24-01 may serve as a good starting point to accelerate the development of more potent hGCN5 inhibitors through further structural decoration and provide new insight into the pharmacological treatment of leukemia.

16.
Bioorg Med Chem ; 26(17): 4871-4880, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30153955

RESUMO

Histone lysine specific demethylase 1 (LSD1) is overexpressed in diverse hematologic disorders and recognized as a promising target for blood medicines. In this study, molecular docking-based virtual screening united with bioevaluation was utilized to identify novel skeleton of 5-arylidene barbiturate as small-molecule inhibitors of LSD1. Among the synthesized derivatives, 12a exhibited reversible and potent inhibition (IC50 = 0.41 µM) and high selectivity over the MAO-A and MAO-B. Notably, 12a strongly induced differentiation effect on acute promyelocytic leukemia NB4 cell line and distinctly escalated the methylation level on histone 3 lysine 4 (H3K4). Our findings indicate that 5-arylidene barbiturate may represent a new skeleton of LSD1 inhibitors and 12a deserve as a promising agent for the further research.


Assuntos
Antineoplásicos/uso terapêutico , Barbitúricos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Histona Desmetilases/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Antineoplásicos/farmacologia , Barbitúricos/química , Linhagem Celular Tumoral , Metilação de DNA , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Leucemia Mieloide Aguda/patologia , Simulação de Acoplamento Molecular , Análise Espectral/métodos
17.
Q J Exp Psychol (Hove) ; 71(7): 1552-1560, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28856959

RESUMO

This article explores structural integration between arithmetic and language by investigating whether the structure of an arithmetic equation influences the way children and adults interpret Chinese sentences in the form of NP1 + VP1 + NP2 + VP2, where VP2 can attach high as a predicate of NP1 or attach low as a predicate of NP2. Participants first solved an arithmetic problem where the last number was to be attached high (e.g., (5 + 1 + 2) × 3) or low (e.g., 5 + (1 + 2 × 3)) and then provided a completion to a preamble in the form of NP1 + VP1 + NP2 + HEN "very" . . . or decided on the meaning of an ambiguous sentence. The way the ambiguous sentences were completed and interpreted was primed by the structure of the preceding arithmetic problem (i.e., a high-attachment prime led to more high-attachment completions and interpretation) in both children and adults. This study found cross-domain priming from arithmetic equations to language, which offered empirical evidence for the shared syntactic integration resource hypothesis and the syntactic working memory theory. It was also found that children were more susceptible to such priming, which provided some tentative evidence for the Incremental Procedural Account proposed by Scheepers et al.


Assuntos
Idioma , Conceitos Matemáticos , Resolução de Problemas/fisiologia , Psicolinguística , Adolescente , Adulto , Criança , China , Feminino , Humanos , Masculino , Adulto Jovem
18.
Anal Bioanal Chem ; 409(28): 6635-6642, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28889204

RESUMO

The ß-secretase (BACE1) initiates the generation of toxic amyloid-ß peptide (Aß) from amyloid-ß precursor protein (APP), which was widely considered to play a key role in the pathogenesis of Alzheimer's disease (AD). Here, a novel microfluidics-based mobility shift assay (MMSA) was developed, validated, and applied for the screening of BACE1 inhibitors for AD. First, the BACE1 activity assay was established with a new fluorescent peptide substrate (FAM-EVNLDAEF) derived from the Swedish mutant APP, and high-quality ratiometric data were generated in both endpoint and kinetic modes by electrophoretic separation of peptide substrate from the BACE1 cleaved product (FAM-EVNL) before fluorescence quantification. To validate the assay, the inhibition and kinetic parameter values of two known inhibitors (AZD3839 and AZD3293) were evaluated, and the results were in good agreement with those reported by other methods. Finally, the assay was applied to screen for new inhibitors from a 900-compound library in a 384-well format, and one novel hit (IC50 = 26.5 ± 1.5 µM) was identified. Compared with the common fluorescence-based assays, the primary advantage of the direct MMSA was to discover novel BACE1 inhibitors with lower auto-fluorescence interference, and its superb capability for kinetic study. Graphical abstract Microfluidics-based mobility shift assay for BACE1.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Técnicas Analíticas Microfluídicas/métodos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ensaios Enzimáticos/métodos , Humanos , Cinética , Proteínas Recombinantes/metabolismo
19.
J Chem Inf Model ; 57(7): 1677-1690, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28636361

RESUMO

Bromodomain-containing protein 4 (BRD4) is implicated in the pathogenesis of a number of different cancers, inflammatory diseases and heart failure. Much effort has been dedicated toward discovering novel scaffold BRD4 inhibitors (BRD4is) with different selectivity profiles and potential antiresistance properties. Structure-based drug design (SBDD) and virtual screening (VS) are the most frequently used approaches. Here, we demonstrate a novel, structure-based VS approach that uses machine-learning algorithms trained on the priori structure and activity knowledge to predict the likelihood that a compound is a BRD4i based on its binding pattern with BRD4. In addition to positive experimental data, such as X-ray structures of BRD4-ligand complexes and BRD4 inhibitory potencies, negative data such as false positives (FPs) identified from our earlier ligand screening results were incorporated into our knowledge base. We used the resulting data to train a machine-learning model named BRD4LGR to predict the BRD4i-likeness of a compound. BRD4LGR achieved a 20-30% higher AUC-ROC than that of Glide using the same test set. When conducting in vitro experiments against a library of previously untested, commercially available organic compounds, the second round of VS using BRD4LGR generated 15 new BRD4is. Moreover, inverting the machine-learning model provided easy access to structure-activity relationship (SAR) interpretation for hit-to-lead optimization.


Assuntos
Descoberta de Drogas/métodos , Aprendizado de Máquina , Terapia de Alvo Molecular , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Ciclo Celular , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
Bioorg Chem ; 72: 182-189, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28460360

RESUMO

Lysine specific demethylase 1 (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from H3 at Lys4 and is recognized as a promising therapeutic target for cancer and other diseases. Here, a series of 3-oxoamino-benzenesulfonamides were synthesized and evaluated for their inhibitory activity against LSD1. Compounds 7b and 7h showed the most potent inhibition with the IC50 values of 9.5 and 6.9µM, respectively. Furthermore, the LSD1 inhibition of 7b and 7h were reversible and selective. Docking study presented the possible binding mode between 7b, 7h and the LSD1 active site. Taken together, 3-oxoamino-benzenesulfonamides may represent a new class of reversible LSD1 inhibitors and 7b and 7h were two hit compounds deserved further structural optimization.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA