Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 132104, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719016

RESUMO

Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.

2.
Ther Adv Hematol ; 15: 20406207241245190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737005

RESUMO

Background: Secondary failure of platelet recovery (SFPR) is a common complication that influences survival and quality of life of patients with ß-thalassemia major (ß-TM) after hematopoietic stem cell transplantation (HSCT). Objectives: A model to predict the risk of SFPR in ß-TM patients after HSCT was developed. Design: A retrospective study was used to develop the prediction model. Methods: The clinical data for 218 ß-TM patients who received HSCT comprised the training set, and those for another 89 patients represented the validation set. The least absolute shrinkage and selection operator regression algorithm was used to identify the critical clinical factors with nonzero coefficients for constructing the nomogram. Calibration curve, C-index, and receiver operating characteristic curve assessments and decision curve analysis (DCA) were used to evaluate the calibration, discrimination, accuracy, and clinical usefulness of the nomogram. Internal and external validation were used to test and verify the predictive model. Results: The nomogram based on pretransplant serum ferritin, hepatomegaly, mycophenolate mofetil use, and posttransplant serum albumin could be conveniently used to predict the SFPR risk of thalassemia patients after HSCT. The calibration curve of the nomogram revealed good concordance between the training and validation sets. The nomogram showed good discrimination with a C-index of 0.780 (95% CI: 70.3-85.7) and 0.868 (95% CI: 78.5-95.1) and AUCs of 0.780 and 0.868 in the training and validation sets, respectively. A high C-index value of 0.766 was reached in the interval validation assessment. DCA confirmed that the nomogram was clinically useful when intervention was decided at the possibility threshold ranging from 3% to 83%. Conclusion: We constructed a nomogram model to predict the risk of SFPR in patients with ß-TM after HSCT. The nomogram has a good predictive ability and may be used by clinicians to identify SFPR patients early and recommend effective preventive measures.

3.
Brain Res ; 1838: 148988, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729332

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors have potent anti-inflammatory effects, including the suppression of brain microglial activation. Veliparib, a well-known PARP1/2 inhibitor, exhibits particularly high brain penetration, but its effects on stroke outcome is unknown. Here, the effects of veliparib on the short-term outcome of intracerebral hemorrhage (ICH), the most lethal type of stroke, were investigated. Collagenase-induced mice ICH model was applied, and the T2-weighted magnetic resonance imaging was performed to evaluate lesion volume. Motor function and hematoma volume were also measured. We further performed immunofluorescence, enzyme linked immunosorbent assay, flow cytometry, and blood-brain barrier assessment to explore the potential mechanisms. Our results demonstrated veliparib reduced the ICH lesion volume dose-dependently and at a dosage of 5 mg/kg, veliparib significantly improved mouse motor function and promoted hematoma resolution at days 3 and 7 post-ICH. Veliparib inhibited glial activation and downregulated the production of pro-inflammatory cytokines. Veliparib significantly decreased microglia counts and inhibited peripheral immune cell infiltration into the brain on day 3 after ICH. Veliparib improved blood-brain barrier integrity at day 3 after ICH. These findings demonstrate that veliparib improves ICH outcome by inhibiting inflammatory responses and may represent a promising novel therapy for ICH.

4.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732250

RESUMO

One previously undescribed alkaloid, named penifuranone A (1), and three known compounds (2-4) were isolated from the mangrove endophytic fungus Penicillium crustosum SCNU-F0006. The structure of the new alkaloid (1) was elucidated based on extensive spectroscopic data analysis and single-crystal X-ray diffraction analysis. Four natural isolates and one new synthetic derivative of penifuranone A, compound 1a, were screened for their antimicrobial, antioxidant, and anti-inflammatory activities. Bioassays revealed that penifuranone A (1) exhibited strong anti-inflammatory activity in vitro by inhibiting nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells with an IC50 value of 42.2 µM. The docking study revealed that compound 1 exhibited an ideal fit within the active site of the murine inducible nitric oxide synthase (iNOS), establishing characteristic hydrogen bonds.


Assuntos
Alcaloides , Óxido Nítrico , Penicillium , Penicillium/química , Penicillium/metabolismo , Camundongos , Animais , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Células RAW 264.7 , Óxido Nítrico/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Óxido Nítrico Sintase Tipo II/metabolismo , Simulação de Acoplamento Molecular , Lipopolissacarídeos , Antioxidantes/farmacologia , Antioxidantes/química , Estrutura Molecular
5.
Virus Res ; : 199394, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735439

RESUMO

Hantaan virus (HTNV) is a major public health concern due to its ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Symptoms of HFRS include fever, hemorrhage, immune dysfunction and renal impairment, and severe cases can be fatal. T cell-mediated adaptive immune responses play a pivotal role in countering HTNV infection. However, our understanding of HTNV and T cell interactions in the disease progression is limited. In this study, we found that human CD4+ T cells can be directly infected with HTNV, thereby facilitating viral replication and production. Additionally, T-cell immunoglobulin and mucin 1 (TIM-1) participated in the process of HTNV infection of Jurkat T cells, and further observed that HTNV enters Jurkat T cells via the clathrin-dependent endocytosis pathway. These findings not only affirm the susceptibility of human CD4+ T lymphocytes to HTNV but also shed light on the viral tropism. Our research elucidates a mode of the interaction between the virus infection process and the immune system. Critically, this study provides new insights into the pathogenesis of HTNV and the implications for antiviral research.

6.
J Transl Med ; 22(1): 482, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773607

RESUMO

BACKGROUND: Cellular immunotherapy, represented by the chimeric antigen receptor T cell (CAR-T), has exhibited high response rates, durable remission, and safety in vitro and in clinical trials. Unfortunately, anti-CD19 CAR-T (CART-19) treatment alone is prone to relapse and has a particularly poor prognosis in relapsed/refractory (r/r) B-ALL patients. To date, addressing or reducing relapse remains one of the research priorities to achieve broad clinical application. METHODS: We manufactured second generation CART-19 cells and validated their efficacy and safety in vitro and in vivo. Through co-culture of Nalm-6 cells with short-term cultured CART-19 cells, CD19-negative Nalm-6 cells were detected by flow cytometry, and further investigation of the relapsed cells and their resistance mechanisms was evaluated in vitro. RESULTS: In this study, we demonstrated that CART-19 cells had enhanced and specific antileukemic activities, and the survival of B-ALL mouse models after CART-19 treatment was significantly prolonged. We then shortened the culture time and applied the serum-free culture to expand CAR-T cells, followed by co-culturing CART-19 cells with Nalm-6 cells. Surprisingly, we observed the proliferation of CD19-negative Nalm-6 cells around 28 days. Identification of potential resistance mechanisms showed that the relapsed cells express truncated CD19 proteins with decreased levels and, more importantly, CAR expression was detected on the relapsed cell surface, which may ultimately keep them antigen-negative. Furthermore, it was validated that CART-22 and tandem CART-22/19 cells could effectively kill the relapsed cells, but neither could completely eradicate them. CONCLUSIONS: We successfully generated CART-19 cells and obtained a CD19-negative refractory relapsed B-ALL cell line, providing new insights into the underlying mechanisms of resistance and a new in vitro model for the treatment of r/r B-ALL patients with low antigen density.


Assuntos
Antígenos CD19 , Receptores de Antígenos Quiméricos , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Técnicas de Cocultura , Ensaios Antitumorais Modelo de Xenoenxerto , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia
7.
Eng Life Sci ; 24(5): 2300016, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708414

RESUMO

Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.

8.
Inflammation ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739343

RESUMO

Acacetin, a flavonoid derived compound has been recognized for its diverse biological activities, such as anti-oxidative and anti-inflammatory effects. Acute lung injury (ALI) is a severe condition characterized by respiratory insufficiency and tissue damage, commonly triggered by pneumonia and severe sepsis. These conditions induce an inflammatory response via Toll-like receptor 4 (TLR4) signaling activation. This study explored acacetin's therapeutic potential against lipopolysaccharide (LPS) induced ALI in mice, focusing on its ability to modulate the NF-κB pathway via regulation of the Nod-like receptor family CARD domain containing 3 (NLRC3), a signal sensor that plays an important role in the regulation of inflammation and the maintenance of homeostasis. Our findings revealed that high-dose acacetin reduced the mortality rate of ALI mice, significantly ameliorated LPS-induced lung pathological changes, reduced lung edema, and decreased the expression of inflammatory mediators in lung tissues. This protective impact of acacetin appears to stem form its capacity to enhance NLRC3 expression, which, intern, can inhibit the activation of NF-κB and subsequently inhibit the production of inflammatory mediators. NLRC3 deficiency inhibits the protective effect of acacetin on ALI mice. Molecular docking also verified that acacetin tightly bound acacetin to NLRC3. Additionally, acacetin was found to influence macrophage recruitment dynamics via NLRC3, inhibiting the overactivation of NLRC3-NF-κB related pathways. Taken together, our results indicate that acacetin inhibited LPS-induced acute lung injury and macrophage overrecruitment to the lungs in mice by upregulating NLRC3.

9.
Anal Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573453

RESUMO

Copper ions (Cu2+) and sulfide (S2-) play essential roles in many physiologies and pathologic processes. Herein, a new "on-off-on" tryptanthrin-based probe TR-1 (TR-1) has been designed and synthesized in a facile and economical way. TR-1 exhibited highly selective and sensitive response to Cu2+ without any interference over 14 competitive metal ions and the detection limit downs to 24 nM, which is far below the Chinese standard of fishery water quality (157 nM). The 'in situ' prepared complex TR-1 + Cu2+ could also be applied to detect S2- with the detection limit of 62 nM. Further, TR-1 was potentially applied for the analysis of copper ions in water samples.

10.
Plants (Basel) ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38592791

RESUMO

The formation and development of tubers, the primary edible and economic organ of potatoes, directly affect their yield and quality. The regulatory network and mechanism of tuberization have been preliminarily revealed in recent years, but plenty of relevant genes remain to be discovered. A few candidate genes were provided due to the simplicity of sampling and result analysis of previous transcriptomes related to tuberization. We sequenced and thoroughly analyzed the transcriptomes of thirteen tissues from potato plants at the tuber proliferation phase to provide more reference information and gene resources. Among them, eight tissues were stolons and tubers at different developmental stages, which we focused on. Five critical periods of tuberization were selected to perform an analysis of differentially expressed genes (DEGs), according to the results of the tissue correlation. Compared with the unswollen stolons (Sto), 2751, 4897, 6635, and 9700 DEGs were detected in the slightly swollen stolons (Sto1), swollen stolons (Sto2), tubers of proliferation stage 1 (Tu1), and tubers of proliferation stage 4 (Tu4). A total of 854 transcription factors and 164 hormone pathway genes were identified in the DEGs. Furthermore, three co-expression networks associated with Sto-Sto1, Sto2-Tu1, and tubers of proliferation stages two to five (Tu2-Tu5) were built using the weighted gene co-expression network analysis (WGCNA). Thirty hub genes (HGs) and 30 hub transcription factors (HTFs) were screened and focalized in these networks. We found that five HGs were reported to regulate tuberization, and most of the remaining HGs and HTFs co-expressed with them. The orthologs of these HGs and HTFs were reported to regulate processes (e.g., flowering, cell division, hormone synthesis, metabolism and signal transduction, sucrose transport, and starch synthesis) that were also required for tuberization. Such results further support their potential to control tuberization. Our study provides insights and countless candidate genes of the regulatory network of tuberization, laying the foundation for further elucidating the genetic basis of tuber development.

11.
Med Oncol ; 41(6): 131, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683455

RESUMO

Colorectal cancer (CRC) is a prevalent and aggressive malignancy with high mortality rates and significant risks to human well-being. Population-wide screening for tumor suppressor genes and oncogenes shows promise for reducing the incidence and fatality of CRC. Recent studies have suggested that NLRX1, an innate immunity suppressor, may play a role in regulating chronic inflammation and tumorigenesis. However, further investigation is needed to understand the specific role of NLRX1 in CRC. To evaluate the impact of NLRX1 on migration, invasion, and metastasis, two human colon cancer cell lines were studied in vitro. Additionally, a knockout mouse tumor-bearing model was used to validate the inhibitory effect of NLRX1 on tumor emergence and progression. The Seahorse XF96 technology was employed to assess mitochondrial function and glycolysis in colorectal cancer cells overexpressing NLRX1. Moreover, public databases were consulted to analyze gene and protein expression levels of NLRX1. Finally, the results were validated using a series of CRC patient samples. Our findings demonstrate that downregulation of NLRX1 enhances proliferation, colony formation, and tumor-forming capacity in HCT116 and LoVo cells. Conversely, overexpression of NLRX1 negatively impacts basal respiration and mitochondrial ATP-linked respiration in both cell lines, resulting in a notable decrease in maximal respiration during the standard mitochondrial stress test. Furthermore, analysis of data from the TCGA database reveals a significant reduction in NLRX1 expression in colon and rectal cancer tissues compared to normal tissues. This result was validated using clinical samples, where immunohistochemistry staining and western blotting demonstrated a notable reduction in NLRX1 protein levels in CRC compared to adjacent normal tissues. The decreased expression of NLRX1 may serve as a significant prognostic indicator and diagnostic biomarker for CRC patients.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Mitocôndrias , Proteínas Mitocondriais , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Linhagem Celular Tumoral , Camundongos Knockout , Proliferação de Células , Células HCT116 , Movimento Celular
12.
BMC Med Genomics ; 17(1): 107, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671491

RESUMO

BACKGROUND: This study aimed to explore the clinical significance of immunogenic cell death (ICD) in acute myeloid leukemia (AML) and its relationship with the tumor immune microenvironment characteristics. It also aimed to provide a potential perspective for bridging the pathogenesis of AML and immunological research, and to provide a theoretical basis for precise individualized treatment of AML patients. METHODS: Firstly, we identified two subtypes associated with ICD by consensus clustering and explored the biological enrichment pathways, somatic mutations, and tumor microenvironment landscape between the ICD subtypes. Additionally, we developed and validated a prognostic model associated with ICD-related genes. Finally, we conducted a preliminary exploration of the construction of disease regulatory networks and prediction of small molecule drugs based on five signature genes. RESULTS: Differentially expressed ICD-related genes can distinguish AML into subgroups with significant differences in clinical characteristics and survival prognosis. The relationship between the ICD- high subgroup and the immune microenvironment was tight, showing significant enrichment in immune-related pathways such as antibody production in the intestinal immune environment, allograft rejection, and Leishmaniasis infection. Additionally, the ICD- high subtype showed significant upregulation in a variety of immune cells such as B_cells, Macrophages_M2, Monocytes, and T_cells_CD4. We constructed a prognostic risk feature based on five signature genes (TNF, CXCR3, CD4, PIK3CA and CALR), and the time-dependent ROC curve confirmed the high accuracy in predicting the clinical outcomes. CONCLUSION: There is a strong close relationship between the ICD- high subgroup and the immune microenvironment. Immunogenicity-related genes have the potential to be a prognostic biomarker for AML.


Assuntos
Morte Celular Imunogênica , Leucemia Mieloide Aguda , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral/imunologia , Prognóstico , Feminino , Masculino , Biomarcadores Tumorais/genética
13.
J Neuroinflammation ; 21(1): 73, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528529

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS), a post-infectious, immune-mediated, acute demyelinating disease of the peripheral nerves and nerve roots, represents the most prevalent and severe acute paralyzing neuropathy. Purinergic P2X7 receptors (P2X7R) play a crucial role in central nervous system inflammation. However, little is known about their role in the immune-inflammatory response within the peripheral nervous system. METHODS: Initially, we assessed the expression of purinergic P2X7R in the peripheral blood of patients with GBS using flow cytometry and qRT-PCR. Next, we explored the expression of P2 X7R in CD4+ T cells, CD8+ T cells, and macrophages within the sciatic nerves and spleens of rats using immunofluorescence labeling and flow cytometry. The P2X7R antagonist brilliant blue G (BBG) was employed to examine its therapeutic impact on rats with experimental autoimmune neuritis (EAN) induced by immunization with the P0180 - 199 peptide. We analyzed CD4+ T cell differentiation in splenic mononuclear cells using flow cytometry, assessed Th17 cell differentiation in the sciatic nerve through immunofluorescence staining, and examined the expression of pro-inflammatory cytokine mRNA using RT-PCR. Additionally, we performed protein blotting to assess the expression of P2X7R and NLRP3-related inflammatory proteins within the sciatic nerve. Lastly, we utilized flow cytometry and immunofluorescence labeling to examine the expression of NLRP3 on CD4+ T cells in rats with EAN. RESULTS: P2X7R expression was elevated not only in the peripheral blood of patients with GBS but also in rats with EAN. In rats with EAN, inhibiting P2X7R with BBG alleviated neurological symptoms, reduced demyelination, decreased inflammatory cell infiltration of the peripheral nerves, and improved nerve conduction. BBG also limited the production of pro-inflammatory molecules, down-regulated the expression of P2X7R and NLRP3, and suppressed the differentiation of Th1 and Th17 cells, thus protecting against EAN. These effects collectively contribute to modifying the inflammatory environment and enhancing outcomes in EAN rats. CONCLUSIONS: Suppression of P2X7R relieved EAN manifestation by regulating CD4+ T cell differentiation and NLRP3 inflammasome activation. This finding underscores the potential significance of P2X7R as a target for anti-inflammatory treatments, advancing research and management of GBS.


Assuntos
Síndrome de Guillain-Barré , Neurite Autoimune Experimental , Antagonistas do Receptor Purinérgico P2X , Animais , Humanos , Ratos , Linfócitos T CD8-Positivos , Diferenciação Celular/efeitos dos fármacos , Síndrome de Guillain-Barré/tratamento farmacológico , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Nervo Isquiático/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/metabolismo
14.
Nanomaterials (Basel) ; 14(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535660

RESUMO

Many studies have been conducted on the microbial reduction of Pd (II) to palladium nanoparticles (Pd-NPs) due to the environmental friendliness, low cost, and the decreased toxicity of Pd (II) ions. In this study, we investigate the reduction mechanism of Pd (II) by Bacillus megaterium Y-4 through proteomics. The data are available via ProteomeXchange with identifier PXD049711. Our results revealed that B. megaterium Y-4 may use the endogenous electron donor (NAD(P)H) generated by nirB, tdh, and fabG and reductase to reduce Pd (II) to Pd-NPs. The expression levels of fabG, tdh, gudB, and rocG that generate NAD(P)H were further increased, and the number of reduced Pd-NPs was further increased with the exogenous electron donor sodium formate. Endogenous electron mediators such as quinones and flavins in B. megaterium Y-4 can further enhance Pd (II) reduction. The findings provided invaluable information regarding the reduction mechanism of Pd (II) by B. megaterium Y-4 at the proteome level.

15.
Orphanet J Rare Dis ; 19(1): 103, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454488

RESUMO

BACKGROUND: As the most common subtype of adult muscular dystrophy worldwide, large cohort reports on myotonic dystrophy type I (DM1) in China are still lacking. This study aims to analyze the genetic and clinical characteristics of Chinese Han DM1 patients. METHODS: Based on the multicenter collaborating effort of the Pan-Yangtze River Delta Alliance for Neuromuscular Disorders, patients with suspected clinical diagnoses of DM1 were genetically confirmed from January 2020 to April 2023. Peak CTG repeats in the DMPK gene were analyzed using triplet repeat-primed PCR (TP-PCR) and flanking PCR. Time-to-event analysis of onset age in females and males was performed. Additionally, detailed clinical features and longitudinal changes from the disease onset in 64 DM1 patients were retrospectively collected and analyzed. The Epworth Sleepiness Scale and Fatigue Severity Scale were used to quantify the severity of daytime sleepiness and fatigue. RESULTS: Among the 211 genetically confirmed DM1 patients, the mean age at diagnosis was 40.9 ± 12.2 (range: 12-74) with a male-to-female ratio of 124:87. The average size of CTG repeats was 511.3 (range: 92-1945). Among the DM1 patients with comprehensive clinical data (n = 64, mean age 41.0 ± 12.0), the age at onset was significantly earlier in males than in females (4.8 years earlier, p = 0.026). Muscle weakness (92.2%), myotonia (85.9%), and fatigue (73.4%) were the most prevalent clinical features. The predominant involved muscles at onset are hands (weakness or myotonia) (52.6%) and legs (walking disability) (42.1%). Of them, 70.3% of patients had daytime sleepiness, 14.1% had cataract surgery, 7.8% used wheelchairs, 4.7% required ventilatory support, and 1.6% required gastric tubes. Regarding the comorbidities, 4.7% of patients had tumors, 17.2% had diabetes, 23.4% had dyspnea, 28.1% had intermittent insomnia, 43.8% experienced dysphagia, and 25% exhibited cognitive impairment. Chinese patients exhibited smaller size of CTG repeats (468 ± 139) than those reported in Italy (613 ± 623), the US (629 ± 386), and Japan (625 [302, 1047]), and milder phenotypes with less multisystem involvement. CONCLUSION: The Chinese Han DM1 patients presented milder phenotypes compared to their Caucasian and Japanese counterparts. A male predominance and an early age of onset were identified in male Chinese Han DM1 patients.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Miotonia , Distrofia Miotônica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Fadiga , Distrofia Miotônica/genética , Distrofia Miotônica/diagnóstico , Estudos Retrospectivos , Criança , Adolescente , Adulto Jovem , Idoso , Estudos Multicêntricos como Assunto , Estudos de Coortes
16.
RSC Med Chem ; 15(2): 492-505, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389880

RESUMO

Invasive fungal infections, with high morbidity and mortality, have become one of the most serious threats to human health. There are a few kinds of clinical antifungal drugs but large amounts of them are used, so there is an urgent need for a new structural type of antifungal drug. In this study, we carried out three rounds of structural optimisation and modification of the compound YW-01, which was obtained from the preliminary screening of the group, by using the strategy of scaffold hopping. A series of novel phenylpyrimidine CYP51 inhibitors were designed and synthesised. In vitro antifungal testing showed that target compound C6 exhibited good efficacy against seven common clinically susceptible strains, which was significantly superior to the clinical first-line drug fluconazole. Subsequently in vitro tests on metabolic stability and cytotoxicity revealed that C6 was safe and stable for hepatic microsomal function. Finally, C6 warranted further exploration as a possible novel structural type of CYP51 inhibitor.

17.
Cell Death Discov ; 10(1): 89, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374196

RESUMO

The Fscn2 (Fascin2) gene encodes an actin cross-linking protein that is involved in the formation of hair cell stereocilia and retina structure. Mutations in Fscn2 gene have been linked to hearing impairment and retinal degeneration in humans and mice. To understand the function of the Fscn2 gene, we generated the Fscn2 knockout mice, which showed progressive loss of hearing and hair cells. Our goal of the present study was to investigate the mechanism underlying cochlear cell death in the Fscn2 knockout mice. Microarray analysis revealed upregulation of expression of PARVB, a local adhesion protein, in the inner ears of Fscn2 knockout mice at 8 weeks of age. Further studies showed increased levels of PARVB together with cleaved-Caspase9 and decreased levels of ILK, p-ILK, p-AKT, and Bcl-2 in the inner ears of Fscn2 knockout mice of the same age. Knockdown of Fscn2 in HEI-OCI cells led to decreased cell proliferation ability and migration rate, along with increased levels of PARVB and decreased levels of ILK, p-ILK, p-AKT, Bcl-2 and activated Rac1 and Cdc42. Overexpression of Fscn2 or inhibition of Parvb expression in HEI-OC1 cells promoted cell proliferation and migration, with increased levels of ILK, p-ILK, p-AKT, and Bcl-2. Finally, FSCN2 binds with PPAR-γ to reduce its nuclear translocation in HEI-OC1 cells, and inhibition of PPAR-γ by GW9662 decreased the level of PARVB and increased the levels of p-AKT, p-ILK, and Bcl-2. Our results suggest that FSCN2 negatively regulates PARVB expression by inhibiting the entry of PPAR-γ into the cell nucleus, resulting in inhibition of ILK-AKT related pathways and of cochlear cell survival in Fscn2 knockout mice. Our findings provide new insights and ideas for the prevention and treatment of genetic hearing loss.

18.
Pain Ther ; 13(2): 227-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300394

RESUMO

INTRODUCTION: A significant number of women who undergo neuraxial labor analgesia experience breakthrough pain. Prompt mitigation of breakthrough pain is essential to improve maternal and fetal outcomes. We evaluated epidural chloroprocaine compared with ropivacaine in alleviating labor breakthrough pain. METHODS: We performed a double-blind randomized controlled clinical trial between May and July 2023. Eligible parturients received epidural analgesia with ropivacaine and sufentanil. Those with breakthrough pain were randomized to receive either 0.125% epidural ropivacaine (group R) or chloroprocaine at concentrations of 0.5% (group C1), 1.0% (group C2), or 1.5% (group C3), all in a volume of 6 mL. The primary outcome was the treatment success rate, indicated by a decrease of at least 4 points on the numerical rating scale pain score 9 min after analgesic injection. Secondary outcomes and adverse effects were also recorded. RESULTS: Out of 323 patients receiving epidural analgesia, 192 experienced breakthrough pain. After exclusion of three patients because of protocol deviation, there were 47, 48, 47, and 47 patients in group R, C1, C2, and C3, respectively. Group C3 demonstrated a higher treatment success rate (39/47, 83.0%) in managing breakthrough pain than group R (26/47, 55.3%), group C1 (12/48, 25.0%), and group C2 (30/47, 63.8%) (p < 0.001). Group C3 had lower numerical rating scale scores at 6 and 9 min after injection and required fewer patient-controlled epidural boluses than other groups. In addition, group C3 reported greater satisfaction than the other groups (p < 0.001). No significant differences were observed in obstetric or neonatal outcomes across these groups. CONCLUSION: Parturients experiencing breakthrough pain could receive 1.5% epidural chloroprocaine, rather than lower chloroprocaine concentrations and ropivacaine, to achieve more rapid and better pain relief with higher patient satisfaction. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2300071069, http://www.chictr.org.cn/index.aspx .

19.
PeerJ ; 12: e16660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259671

RESUMO

Objective: The aim of this study was to identify the expression of miRNA and lymphocyte subsets in the blood of gastric cancer (GC) patients, elucidate their clinical significance in GC, and establish novel biomarkers for the early diagnosis and prognosis of GC. Methods: The expression of miRNAs in the serum of GC patients was screened using second-generation sequencing and detected using qRT-PCR. The correlation between miRNA expression and clinicopathological characteristics of GC patients was analyzed, and molecular markers for predicting cancer were identified. Additionally, flow cytometry was used to detect the proportion of lymphocyte subsets in GC patients compared to healthy individuals. The correlations between differential lymphocyte subsets, clinicopathological features of GC patients, and their prognosis were analyzed statistically. Results: The study revealed that hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were expressed at lower levels in the blood of GC patients, which is consistent with miRNA-seq findings. The AUC values of hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be effective predictors of GC occurrence. Additionally, hsa-miR-296-5p was found to be negatively correlated with CA724. Furthermore, hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be associated with the stage of the disease and were closely linked to the clinical pathology of GC. The lower the levels of these miRNAs, the greater the clinical stage of the tumor and the worse the prognosis of gastric cancer patients. Finally, the study found that patients with GC had lower absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and lymphocytes compared to healthy individuals. The quantity of CD4+ T lymphocytes and the level of the tumor marker CEA were shown to be negatively correlated. The ROC curve and multivariate logistic regression analysis demonstrated that lymphocyte subsets can effectively predict gastric carcinogenesis and prognosis. Conclusion: These miRNAs such as hsa-miR-1306-5p, hsa-miR-3173-5p, hsa-miR-296-5p and lymphocyte subsets such as the absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, lymphocytes are down-regulated in GC and are closely related to the clinicopathological characteristics and prognosis of GC patients. They may serve as new molecular markers for predicting the early diagnosis and prognosis of GC patients.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , MicroRNAs/genética , Subpopulações de Linfócitos , Contagem de Linfócitos , Biomarcadores Tumorais/genética
20.
Bioorg Med Chem Lett ; 99: 129598, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169246

RESUMO

The synthesis of compounds based on fragments derived from natural products (NPs) serves as a source of inspiration for the design of pseudo-natural products (PNPs), to identify bioactive molecules that exhibit similar characteristics to NPs. These novel molecular scaffolds exhibit previously unexplored biological activities as well. This study reports the development and synthesis of a novel pentacyclic ring system, the indole-pyrimidine-quinoline (IPQ) scaffold. The design of this scaffold was based on the structural characteristics of four natural products, namely tryptanthrin, luotonin A, rutaecarpine, and camptothecin. Several successive steps accomplished the effective synthesis of the IPQ scaffold. The constituent components of the pentacycle, containing the indole, quinazolinone, pyrimidone, and quinoline units, possess significant biological significance. Compound 1a demonstrated noteworthy anti-tumor activity efficacy against A549 cell lines among the tested compounds. The compound 1a was observed to elicit cell cycle arrest in both the G2/M and S phases, as well as trigger apoptosis in A549 cells. These effects were attributed to its ability to modulate the activation of mitochondrial-related mitogen-activated protein kinase (MAPK) signaling pathways.


Assuntos
Antineoplásicos , Produtos Biológicos , Quinolinas , Antineoplásicos/química , Apoptose , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Camptotecina/farmacologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Quinolinas/farmacologia , Indóis/química , Indóis/farmacologia , Pirimidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA