Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902883

RESUMO

The Fusarium head blight (FHB) caused by Fusarium graminearum is a serious fungal disease that can dramatically impact wheat production. At present, control is mainly achieved by the use of chemical fungicides. Hexaconazole (IUPAC name: 2-(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol) is a widely used triazole fungicide, but the sensitivity of F. graminearum to this compound has yet to be established. The current study found that the EC50 values of 83 field isolates of F. graminearum ranged between 0.06 and 4.33 µg/mL, with an average EC50 of 0.78 µg/mL. Assessment of four hexaconazole-resistant laboratory mutants of F. graminearum revealed that their mycelial growth, and pathogenicity were reduced compared to their parental isolates, and that asexual reproduction was reduced by resistance to hexaconazole. Meanwhile, the mutants appeared to be more sensitive to abiotic stress associated with SDS, and H2O2, while their tolerance of high concentration of Congo red, and Na+ and K+ increased. Molecular analysis revealed numerous point mutations in the FgCYP51 target genes that resulted in amino acid substitutions, including L92P and N123S in FgCYP51A, as well as M331V, F62L, Q252R, A412V, and V488A in FgCYP51B, and S28L, S256A, V307A, D287G and R515I in FgCYP51C, three of which (S28L, S256A, and V307A) were conserved in all of the resistant mutants. Furthermore, the expression of the FgCYP51 genes in resistant strains was found to be significantly (p < 0.05) reduced compared to their sensitive parental isolates. Positive cross-resistance was found between hexaconazole and metconazole and flutriafol, as well as with the diarylamine fungicide fluazinam, but not with propiconazole, and the phenylpyrrole fungicide fludioxonil, or with tebuconazole, which actually exhibited negative cross-resistance. These results provide valuable insight into resistant mechanisms to triazole fungicides in F. graminearum, as well as the appropriate selection of fungicide combinations for the control of FHB to ensure optimal wheat production.

2.
Pestic Biochem Physiol ; 202: 105958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879340

RESUMO

The wheat aphid Sitobion miscanthi is a dominant and destructive pest in agricultural production. Insecticides are the main substances used for effective control of wheat aphids. However, their extensive application has caused severe resistance of wheat aphids to some insecticides; therefore, exploring resistance mechanisms is essential for wheat aphid management. In the present study, CYP6CY2, a new P450 gene, was isolated and overexpressed in the imidacloprid-resistant strain (SM-R) compared to the imidacloprid-susceptible strain (SM-S). The increased sensitivity of S. miscanthi to imidacloprid after knockdown of CYP6CY2 indicates that it could be associated with imidacloprid resistance. Subsequently, the posttranscriptional regulation of CYP6CY2 in the 3' UTR by miR-3037 was confirmed, and CYP6CY2 participated in imidacloprid resistance. This finding is critical for determining the role of P450 in relation to the resistance of S. miscanthi to imidacloprid. It is of great significance to understand this regulatory mechanism of P450 expression in the resistance of S. miscanthi to neonicotinoids.


Assuntos
Afídeos , Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Inseticidas , MicroRNAs , Neonicotinoides , Nitrocompostos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Afídeos/genética , Afídeos/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Imidazóis/farmacologia
3.
Plant Dis ; 107(8): 2417-2423, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36691280

RESUMO

Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is one of the most important diseases impacting wheat production in the Huanghuai region, the most important wheat-growing region of China. The current study found that the SDHI fungicide pydiflumetofen, which was recently developed by Syngenta Crop Protection, provided effective control of 67 wild-type F. pseudograminearum isolates in potato dextrose agar, with an average EC50 value of 0.060 ± 0.0098 µg/ml (SE). Further investigation revealed that the risk of fungicide resistance in pydiflumetofen was medium to high. Four F. pseudograminearum mutants generated by repeated exposure to pydiflumetofen under laboratory conditions indicated that pydiflumetofen resistance was associated with fitness penalties. Mutants exhibited significantly (P < 0.05) reduced sporulation in mung bean broth and significantly (P < 0.05) reduced pathogenicity in wheat seedlings. Sequence analysis indicated that the observed pydiflumetofen resistance of the mutants was likely associated with amino acid changes in the different subunits of the succinate dehydrogenase target protein, including R18L and V160M substitutions in the FpSdhA sequence; D69V, D147G, and C257R in FpSdhB; and W78R in FpSdhC. This study found no evidence of cross-resistance between pydiflumetofen and the alternative fungicides tebuconazole, fludioxonil, carbendazim, or fluazinam, which all have distinct modes of action and could therefore be used in combination or rotation with pydiflumetofen to reduce the risk of resistance emerging in the field. Taken together, these results indicate that pydiflumetofen has potential as a novel fungicide for the control of FCR caused by F. pseudograminearum and could therefore be of great significance in ensuring high and stable wheat yields in China.


Assuntos
Fungicidas Industriais , Fusarium , Fusarium/genética , Doenças das Plantas , China , Fungicidas Industriais/farmacologia , Triticum
4.
Bull Entomol Res ; 112(5): 646-655, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35172917

RESUMO

The wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Insecticide application is the main method to effectively control wheat aphids. However, CWA has developed resistance to some insecticides due to its extensive application, and understanding resistance mechanisms is crucial for the management of CWA. In our study, a new P450 gene, CYP4CJ6, was identified from CWA and showed a positive response to imidacloprid and thiamethoxam. Transcription of CYP4CJ6 was significantly induced by both imidacloprid and thiamethoxam, and overexpression of CYP4CJ6 in the imidacloprid-resistant strain was also observed. The sensitivity of CWA to these two insecticides was increased after the knockdown of CYP4CJ6. These results indicated that CYP4CJ6 could be associated with CWA resistance to imidacloprid and thiamethoxam. Subsequently, the posttranscriptional regulatory mechanism was assessed, and miR-316 was confirmed to participate in the posttranscriptional regulation of CYP4CJ6. These results are crucial for clarifying the roles of P450 in the resistance of CWA to insecticides.


Assuntos
Afídeos , Inseticidas , Animais , Inseticidas/farmacologia , Afídeos/fisiologia , Tiametoxam/farmacologia , Resistência a Inseticidas/genética , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia
5.
Pestic Biochem Physiol ; 177: 104885, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301353

RESUMO

Imidacloprid is a neonicotinoid that targets sucking pests, such as aphids and the green leaf bug and has been widely applied in wheat fields to control wheat aphids in China. To investigate the involvement of miRNAs in imidacloprid resistance, we sequenced small RNA libraries of Sitobion miscanthi Fabricius, across two different treatments using Illumina short-read sequencing technology. As a result, 265 microRNAs (miRNAs), of which 242 were known and 23 were novel, were identified. Quantitative analysis of miRNA levels showed that 23 miRNAs were significantly up-regulated, and 54 miRNAs were significantly down-regulated in the nymphs of S. miscanthi treated with imidacloprid in comparison with those of the control. Modulation of the abundances of differentially expressed miRNAs, smi-miR-316, smi-miR-1000, and smi-miR-iab-4 by the addition of the corresponding antagomir/inhibitor to the artificial diet significantly changed the susceptibility of S. miscanthi to imidacloprid. Subsequently, the post-transcriptional regulatory mechanism was conducted, smi-miR-278 and smi-miR-316 were confirmed to be participated in the post-transcriptional regulation of nAChRα1A and CYP4CJ6, respectively. The results suggested that miRNAs differentially expressed in response to imidacloprid could play a critical regulatory role in the metabolism of S. miscanthi to imidacloprid.


Assuntos
Afídeos , MicroRNAs , Animais , Afídeos/genética , China , Perfilação da Expressão Gênica , MicroRNAs/genética , Neonicotinoides/toxicidade , Nitrocompostos
6.
Int J Mol Sci ; 15(1): 574-87, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24398982

RESUMO

Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIP(uv) possessed specific binding to atrazine compared with their MIP(FIR) radiation counterparts. Scatchard plot's of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%-94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%-97.1% and 94.4%-101.9%, for both MIPs, respectively.


Assuntos
Atrazina/química , Impressão Molecular , Polímeros/química , Adsorção , Atrazina/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Raios Infravermelhos , Polimerização/efeitos da radiação , Polímeros/síntese química , Extração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta , Água/química
7.
Chem Cent J ; 7(1): 129, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23890199

RESUMO

BACKGROUND: At present, the study on the homogeneous-phase derivatization of cellulose in ionic liquid is mainly focused on its acetylation. To the best of our knowledge, there has been no such report on the preparation of cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) with ionic liquid 1-allyl-3-methyl-imidazolium chloride (AmimCl) so far. RESULTS: With ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction solvent, cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) was synthesized by the reaction of 3,5-dimethylphenyl isocyanate and soluble microcrystalline cellulose in a homogeneous phase. The synthesized CDMPC was then coated onto the surfaces of aminopropyl silica gel to prepare a chiral stationary phase (CSP). The prepared CSP was successfully used in chiral separation of seven racemic pesticides by high performance liquid chromatography (HPLC). Good chiral separation was obtained using n-hexane and different modifiers as the mobile phases under the optimal percentage and column temperature, with the resolution of metalaxyl, diniconazole, flutriafol, paclobutrazol, hexaconazole, myclobutanil and hexythiazox of 1.73, 1.56, 1.26, 1.00, 1.18, 1.14 and 1.51, respectively. The experimental results suggested it was a good choice using a green solvent of AmimCl for cellulose functionalization. CONCLUSION: CDMPC was successfully synthesized as the chiral selector by reacting 3, 5-dimethylphenyl isocyanate with dissolved microcrystalline cellulose in a green ionic liquid of AmimCl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA