Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virology ; 594: 110032, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38467094

RESUMO

Many viruses employ a process known as superinfection exclusion (SIE) to block subsequent entry or replication of the same or closely related viruses in the cells they occupy. SIE is also referred to as Cross-protection refers to the situation where a host plant infected by a mild strain of a virus or viroid gains immunity against a more severe strain closely related to the initial infectant. The mechanisms underlying cross-protection are not fully understood. In this study, we performed a comparative transcriptomic analysis of potato (Solanum tuberosum L.) leaves. The strains PVYN-Wi-HLJ-BDH-2 and PVYNTN-NW-INM-W-369-12 are henceforth designated as BDH and 369, respectively. In total, 806 differentially expressed genes (DEGs) were detected between the Control and JZ (preinfected with BDH and challenge with 369) treatment. Gene Ontology (GO) analysis showed that the response to external biological stimulation, signal transduction, kinase, immunity, redox pathways were significantly enriched. Among these pathways, we identified numerous differentially expressed metabolites related to virus infection. Moreover, our data also identified a small set of genes that likely play important roles in the establishment of cross-protection. Specifically, we observed significant differential expression of the A1-II gamma-like gene, elongation factor 1-alpha-like gene, and subtilisin-like protease StSBT1.7 gene, with StSBT1.7 being the most significant in our transcriptome data. These genes can stimulate the expression of defense plant genes, induce plant chemical defense, and participate in the induction of trauma and pathogenic bacteria. Our findings provided insights into the mechanisms underlying the ability of mild viruses to protect host plants against subsequent closely related virus infection in Solanum tuberosum L.


Assuntos
Potyvirus , Solanum tuberosum , Viroses , Potyvirus/genética , Perfilação da Expressão Gênica , Transcriptoma , Doenças das Plantas
2.
Mol Neurobiol ; 61(9): 6279-6299, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38286967

RESUMO

Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one's ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual's physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain's neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body-brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Epigênese Genética , Exercício Físico , Humanos , Exercício Físico/fisiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Animais
3.
Front Microbiol ; 14: 1303979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143871

RESUMO

Arbuscular mycorrhizal fungi (AMF) have demonstrated the potential to enhance the saline-alkali tolerance in plants. Nevertheless, the extent to which AMF can ameliorate the tolerance of salt-sensitive plants to alkaline conditions necessitates further investigation. The current study is primarily centered on elucidating the impact of AMF on the growth of the Huayu22 (H22) when cultivated in saline-alkaline soil. We leveraged DNA of rhizosphere microorganisms extracted from saline-alkali soil subjected to AMF treatment and conducted high-throughput sequencing encompassing 16S rRNA gene and ITS sequencing. Our findings from high-throughput sequencing unveiled Proteobacteria and Bacillus as the prevailing phylum and genus within the bacterial population, respectively. Likewise, the predominant fungal phylum and genus were identified as Ascomycota and Haematonectria. It is noteworthy that the relative abundance of Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, and Ascomycota exhibited significant increments subsequent to AMF inoculation. Our investigation into soil enzyme activity revealed a remarkable surge post-AMF inoculation. Notably, the amounts of pathogen growth inhibitory enzymes and organic carbon degrading enzymes rise, as predicted by the putative roles of microbial communities. In saline-alkali soil, inoculation of AMF did boost the yield of H22. Notable improvements were observed in the weight of both 100 fruits and 100 grains, which increased by 20.02% and 22.30%, respectively. Conclusively, this study not only provides a theoretical framework but also furnishes empirical evidence supporting the utilization of AMF as a viable strategy for augmenting the yield of salt-sensitive plants grown in alkaline conditions.

4.
Potato Res ; 66(1): 231-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35996391

RESUMO

Virus infection is the key constraint to potato cultivation worldwide. Especially, coinfection by multiple viruses could exacerbate the yield loss. Transgenic plants expressing artificial microRNAs (amiRNAs) have been shown to confer specific resistance to viruses. In this study, three amiRNAs containing Arabidopsis miR159 as a backbone, expressing genes targeting P25, HC-Pro and Brp1 of potato virus X (PVX), potato virus Y (PVY) and potato spindle tuber viroid (PSTVd), were constructed. amiR-159P25, amiR-159HCPro and amiR-159Brp1 were cloned into the plant expression vector pCAMBIA1301 with a CaMV35S promoter, producing the p1301-pre-amiRP25-HCPro-Brp1 vector. Twenty-three transgenic plants (Solanum tuberosum cv. 'Youjin') were obtained by Agrobacterium tumefaciens-mediated transformation, and ten PCR-positive transplants were chosen for further analysis. Quantitative real-time PCR results indicated that 10 transgenic plants could express amiRNAs successfully. Southern blotting hybridization proved that amiR-159P25-HCPro-Brp1 had integrated into potato genome in transgenic lines. Viral (viroid) challenge assays revealed that these transgenic plants demonstrated resistance against PVX, PVY and PSTVd coinfection simultaneously, whereas the untransformed controls developed severe symptoms. This study demonstrates a novel amiRNA-based mechanism that may have the potential to develop multiple viral resistance strategies in potato.

5.
Front Psychol ; 13: 914568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846633

RESUMO

The purpose of this study was to observe whether aerobic exercise is able to alleviate the impairment of cognitive control ability in college students by sleep deprivation through cognitive control (Go-NoGo task) and blood-based markers. Taking 30 healthy college students (15 males and 15 females) as participants, using a random cross-over design within groups, respectively perform one night of sleep deprivation and one night of normal sleep (8 h). The exercise intervention modality was to complete a 30-min session of moderate-intensity aerobic exercise on a power bicycle. Change in cognitive control was assessed using the Go/NoGo task paradigm; 5-ht and blood glucose contentwere determined by enzyme-linked immuno sorbent assay and glucose oxidase electrode Measurement, respectively. The results showed that sleep deprivation could significantly reduce the response inhibition ability and response execution ability, and significantly reduce the blood 5-ht content (p< 0.01). Thirty minutes of moderate intensity aerobic exercise intervention significantly increased response inhibition ability and response execution ability, significantly increased blood 5-ht content (p<0.01), and did not change serum glucose levels. Conclusion: An acute aerobic exercise can alleviate the cognitive control impairment caused by sleep deprivation, and 5-ht may be one of the possible mechanisms by which aerobic exercise alleviates the cognitive control impairment caused by sleep deprivation.

6.
Nanoscale Res Lett ; 12(1): 182, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28282978

RESUMO

Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the resistance of the Ni-silicide nanocrystal-modified Si nanowire and the Ni-silicide/Si heterostructure multi-stacked nanowire to be a little higher and much lower than that of Si nanowire. An O2 sensing device was formed from a nanowire that was mounted on Pt electrodes. When the nanowires exposed to O2, the increase in current in the Ni-silicide/Si heterostructure multi-stacked nanowire was much larger than that in the other nanowires. The Ni-silicide nanocrystal-modified Si nanowire device had the highest sensitivity. The phenomenon can be explained by the formation of a Schottky junction at the Ni-silicide/Si interface in these two types of Ni-Silicide/Si nanowire and the formation of a hole channel at the silicon nanowire/native oxide interface after exposing the nanowires to O2.

7.
Sci Rep ; 6: 35751, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767195

RESUMO

Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana plants (line 16c), we found that PSTVd replication accelerated GFP silencing and increased Virp1 mRNA, which encodes bromodomain-containing viroid-binding protein 1 and is required for PSTVd replication. DNA methylation was increased in the GFP transgene promoter of PSTVd-replicating plants, indicating involvement of transcriptional gene silencing. Consistently, accelerated GFP silencing and increased DNA methylation in the of GFP transgene promoter were detected in plants transiently expressing Virp1. Virp1 mRNA was also increased upon PSTVd infection in natural host potato plants. Reduced transcript levels of certain endogenous genes were also consistent with increases in DNA methylation in related gene promoters in PSTVd-infected potato plants. Together, our data demonstrate that PSTVd replication interferes with the nuclear silencing pathway in that host plant, and this is at least partially attributable to Virp1. This study provides new insights into the plant-viroid interaction on viroid pathogenicity by subverting the plant cell silencing machinery.


Assuntos
Nicotiana/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , RNA não Traduzido/biossíntese , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Viroides/fisiologia , Viroides/patogenicidade , Metilação de DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Fluorescência Verde/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Nicotiana/genética , Viroides/genética , Replicação Viral/genética , Replicação Viral/fisiologia
8.
Front Microbiol ; 7: 1329, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605926

RESUMO

Using a transient plant system, it was previously found that the suppression of Cucumber mosaic virus (CMV) 2b protein relies on its double-strand (ds) RNA binding capacity, but it is independent of its interaction with ARGONAUTE (AGO) proteins. Thus, the biological meaning of the 2b-AGO interaction in the context of virus infection remains elusive. In this study, we created infectious clones of CMV mutants that expressed the 2b functional domains of dsRNA or AGO binding and tested the effect of these CMV mutants on viral pathogenicity. We found that the mutant CMV2b(1-76) expressing the 2b dsRNA-binding domain exhibited the same virulence as wild-type CMV in infection with either wild-type Arabidopsis or rdr1/6 plants with RDR1- and RDR6-deficient mutations. However, remarkably reduced viral RNA levels and increased virus (v)siRNAs were detected in CMV2b(1-76)-infected Arabidopsis in comparison to CMV infection, which demonstrated that the 2b(1-76) deleted AGO-binding domain failed to suppress the RDR1/RDR6-dependent degradation of viral RNAs. The mutant CMV2b(8-111) expressing mutant 2b, in which the N-terminal 7 amino acid (aa) was deleted, exhibited slightly reduced virulence, but not viral RNA levels, in both wild-type and rdr1/6 plants, which indicated that 2b retained the AGO-binding activity acquired the counter-RDRs degradation of viral RNAs. The deletion of the N-terminal 7 aa of 2b affected virulence due to the reduced affinity for long dsRNA. The mutant CMV2b(18-111) expressing mutant 2b lacked the N-terminal 17 aa but retained its AGO-binding activity greatly reduced virulence and viral RNA level. Together with the instability of both 2b(18-111)-EGFP and RFP-AGO4 proteins when co-expressed in Nicotiana benthamiana leaves, our data demonstrates that the effect of 2b-AGO interaction on counter-RDRs antiviral defense required the presence of 2b dsRNA-binding activity. Taken together, our findings demonstrate that the dsRNA-binding activity of the 2b was essential for virulence, whereas the 2b-AGO interaction was necessary for interference with RDR1/6-dependent antiviral silencing in Arabidopsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA