Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
New Phytol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769723

RESUMO

Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.

2.
Plant Physiol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488068

RESUMO

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for below-ground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38020052

RESUMO

Breast cancer remains the leading malignancy in terms of morbidity and mortality today. The tumor microenvironment of breast cancer includes multiple cell types, secreted proteins, and signaling components such as exosomes. Among these, exosomes have a lipid bilayer structure. Exosomes can reflect the biological traits of the parent cell and carry a variety of biologically active components, including proteins, lipids, small molecules, and non-coding RNAs, which include miRNA, lncRNA, and circRNA. MiRNAs are a group of non-coding RNAs of approximately 20-23 nucleotides in length encoded by the genome, triggering silencing and functional repression of target genes. MiRNAs have been shown to play a significant role in the development of cancer owing to their role in the prognosis, pathogenesis, diagnosis, and treatment of cancer. MiRNAs in exosomes can serve as effective mediators of information transfer from parental cells to recipient cells and trigger changes in biological traits such as proliferation, invasion, migration, and drug resistance. These changes can profoundly alter the progression of breast cancer. Therefore, here, we systematically summarize the association of exosomal miRNAs on breast cancer progression, diagnosis, and treatment in the hope of providing novel strategies and directions for subsequent breast cancer treatment.

4.
Open Life Sci ; 18(1): 20220731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808875

RESUMO

Crohn's disease (CD) is a recurrent, chronic inflammatory condition of the gastrointestinal tract which is a clinical subtype of inflammatory bowel disease for which timely and non-invasive diagnosis in children remains a challenge. A novel predictive risk signature for pediatric CD diagnosis was constructed from bioinformatics analysis of six mRNAs, adenomatosis polyposis downregulated 1 (APCDD1), complement component 1r, mitogen-activated protein kinase kinase kinase kinase 5 (MAP3K5), lysophosphatidylcholine acyltransferase 1, sphingomyelin synthase 1 and transmembrane protein 184B, and validated using samples. Statistical evaluation was performed by support vector machine learning, weighted gene co-expression network analysis, differentially expressed genes and pathological assessment. Hematoxylin-eosin staining and immunohistochemistry results showed that APCDD1 was highly expressed in pediatric CD tissues. Evaluation by decision curve analysis and area under the curve indicated good predictive efficacy. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis confirmed the involvement of immune and cytokine signaling pathways. A predictive risk signature for pediatric CD is presented which represents a non-invasive supplementary tool for pediatric CD diagnosis.

5.
Plant Cell Environ ; 46(12): 3839-3857, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37651608

RESUMO

Cold is a major environmental factor that restrains potato production. Abscisic acid (ABA) can enhance freezing tolerance in many plant species, but powerful evidence of the ABA-mediated signalling pathway related to freezing tolerance is still in deficiency. In the present study, cold acclimation capacity of the potato genotypes was enhanced alongside with improved endogenous content of ABA. Further exogenous application of ABA and its inhibitor (NDGA) could enhance and reduce potato freezing tolerance, respectively. Moreover, expression pattern of downstream genes in ABA signalling pathway was analysed and only ScAREB4 was identified with specifically upregulate in S. commersonii (CMM5) after cold and ABA treatments. Transgenic assay with overexpression of ScAREB4 showed that ScAREB4 promoted freezing tolerance. Global transcriptome profiling indicated that overexpression of ScAREB4 induced expression of TPS9 (trehalose-6-phosphate synthase) and GSTU8 (glutathione transferase), in accordance with improved TPS activity, trehalose content, higher GST activity and accumulated dramatically less H2 O2 in the ScAREB4 overexpressed transgenic lines. Taken together, the current results indicate that increased endogenous content of ABA is related to freezing tolerance in potato. Moreover, ScAREB4 functions as a downstream transcription factor of ABA signalling to promote cold tolerance, which is associated with increased trehalose content and antioxidant capacity.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Trealose , Congelamento , Aclimatação/fisiologia , Ácido Abscísico/farmacologia , Estresse Oxidativo , Regulação da Expressão Gênica de Plantas
6.
J Exp Bot ; 74(21): 6708-6721, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479226

RESUMO

Abscisic acid (ABA) is critical in drought tolerance and plant growth. Group A protein type 2C phosphatases (PP2Cs) are negative regulators of ABA signaling and plant adaptation to stress. Knowledge about the functions of potato group A PP2Cs is limited. Here, we report that the potato group A PP2C StHAB1 is broadly expressed in potato plants and strongly induced by ABA and drought. Suppression of StHAB1 enhanced potato ABA sensitivity and drought tolerance, whereas overexpression of the dominant mutant StHAB1G276D compromised ABA sensitivity and drought tolerance. StHAB1 interacts with almost all ABA receptors and the Snf1-Related Kinase OST1. Suppressing StHAB1 and overexpressing StHAB1G276D alter potato growth morphology; notably, overexpression of StHAB1G276D causes excessive shoot branching. RNA-sequencing analyses identified that the auxin efflux carrier genes StPIN3, StPIN5, and StPIN8 were up-regulated in StHAB1G276D-overexpressing axillary buds. Correspondingly, the auxin concentration was reduced in StHAB1G276D-overexpressing axillary buds, consistent with the role of auxin in repressing lateral branch outgrowth. The expression of BRANCHED1s (StBRC1a and StBRC1b) was unchanged in StHAB1G276D-overexpressing axillary buds, suggesting that StHAB1G276D overexpression does not cause axillary bud outgrowth via regulation of BRC1 expression. Our findings demonstrate that StHAB1 is vital in potato drought tolerance and shoot branching.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum tuberosum , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistência à Seca , Ácidos Indolacéticos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
7.
Aging (Albany NY) ; 15(12): 5592-5610, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37338518

RESUMO

Currently, the role of liquid-liquid phase separation (LLPS) in cancer has been preliminarily explained. However, the significance of LLPS in breast cancer is unclear. In this study, single cell sequencing datasets GSE188600 and GSE198745 for breast cancer were downloaded from the GEO database. Transcriptome sequencing data for breast cancer were downloaded from UCSC database. We divided breast cancer cells into high-LLPS group and low-LLPS group by down dimension clustering analysis of single-cell sequencing data set, and obtained differentially expressed genes between the two groups. Subsequently, weighted co-expression network analysis (WGCNA) was performed on transcriptome sequencing data, and the module genes most associated with LLPS were obtained. COX regression and Lasso regression were performed and the prognostic model was constructed. Subsequently, survival analysis, principal component analysis, clinical correlation analysis, and nomogram construction were used to evaluate the significance of the prognostic model. Finally, cell experiments were used to verify the function of the model's key gene, PGAM1. We constructed a LLPS-related prognosis model consisting of nine genes: POLR3GL, PLAT, NDRG1, HMGB3, HSPH1, PSMD7, PDCD2, NONO and PGAM1. By calculating LLPS-related risk scores, breast cancer patients could be divided into high-risk and low-risk groups, with the high-risk group having a significantly worse prognosis. Cell experiments showed that the activity, proliferation, invasion and healing ability of breast cancer cell lines were significantly decreased after knockdown of the key gene PGAM1 in the model. Our study provides a new idea for prognostic stratification of breast cancer and provides a novel marker: PGAM1.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Multiômica , Fatores de Transcrição , Análise por Conglomerados , Bases de Dados Factuais , Prognóstico , Proteínas Reguladoras de Apoptose
8.
Front Cell Infect Microbiol ; 13: 1083236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909725

RESUMO

Background: Most studies have reported fecal microbiota transplantation (FMT) as an effective secondary option for Crohn's disease (CD). However, there is little data on FMT as a first-line treatment for CD. In our study we explore the rates of clinical and endoscopic remission and mucosal healing after FMT plus partial enteral nutrition (PEN), as a first-line treatment for active CD in children. Methods: We retrospectively enrolled pediatric CD patients who underwent PEN or PEN plus FMT treatment at diagnosis from November 2016 to July 2019 at the Pediatric Department, Tongji Hospital. The two groups were defined as FMT group (repeated and multiple doses of FMT plus PEN) or PEN group (PEN alone). All the patients received PEN intervention. At baseline and week 8- 10, the FMT group was administered multiple doses of FMT to help induce and maintain remission. All patients were evaluated at week 8- 10 and 18-22 via clinical and relevant laboratory parameters and endoscopic results. The clinical and endoscopic remission and mucosal healing rates were compared between the two groups at different time points after the therapy. Results: Twenty-five newly diagnosed active CD patients were included in the study, containing 7 females and 18 males with a median age of 11. 1 ± 2.3 years. 13 and 12 patients were assigned to the PEN and FMT groups, respectively. At week 8-10, clinical remission was obtained in 83.3% and 53.8% of the FMT and PEN groups, respectively (p=0.202). The endoscopic remission rates were 72.7% for FMT and 25.0% for PEN (p=0.039), whereas the mucosal healing rates were 27.2% for FMT and 0% for PEN (p=0.093). At week 18-22, clinical remission was achieved in 72.7% and 20.0% of patients in the FMT and PEN groups, respectively (p=0.03). Theendoscopic remission rates were 66.6% and 12.5% in the FMT and PEN groups, respectively (p=0.05), whereas the mucosal healing rates were 55.5% and 0% in FMT and PEN groups, respectively (p=0.029). Conclusion: This study demonstrate that FMT plus PEN can be used as a first-line treatment for active CD in children.


Assuntos
Doença de Crohn , Masculino , Criança , Feminino , Humanos , Transplante de Microbiota Fecal/métodos , Nutrição Enteral/métodos , Estudos Retrospectivos , Indução de Remissão , Penicilina G , Resultado do Tratamento
9.
Front Plant Sci ; 14: 1087121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743487

RESUMO

Anthocyanin biosynthesis is affected by light, temperature, and other environmental factors. The regulation mode of light on anthocyanin synthesis in apple, pear, tomato and other species has been reported, while not clear in potato. In this study, potato RM-210 tubers whose peel will turn purple gradually after exposure to light were selected. Transcriptome analysis was performed on RM-210 tubers during anthocyanin accumulation. The expression of StMYBA1 gene continued to increase during the anthocyanin accumulation in RM-210 tubers. Moreover, co-expression cluster analysis of differentially expressed genes showed that the expression patterns of StMYBA1 gene were highly correlated with structural genes CHS and CHI. The promoter activity of StMYBA1 was significantly higher in light conditions, and StMYBA1 could activate the promoter activity of structural genes StCHS, StCHI, and StF3H. Further gene function analysis found that overexpression of StMYBA1 gene could promote anthocyanin accumulation and structural gene expression in potato leaves. These results demonstrated that StMYBA1 gene promoted potato anthocyanin biosynthesis by activating the expression of structural genes under light conditions. These findings provide a theoretical basis and genetic resources for the regulatory mechanism of potato anthocyanin synthesis.

10.
Plant J ; 113(2): 342-356, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36444716

RESUMO

Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.


Assuntos
Solanum tuberosum , Amido , Amido/metabolismo , Vacúolos/metabolismo , Plantas/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Maltose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Front Pediatr ; 10: 964154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304525

RESUMO

Background: Fecal microbiota transplantation (FMT) is an effective treatment for intestinal and extra-intestinal disorders. Nonetheless, long-term safety and efficacy remain major challenges for FMT applications. To date, few long-term follow-up studies have been published on FMT in children. Methods: Retrospective reviewed the medical charts of 74 patients who underwent 508 FMT courses between August 2014 and July 2019 at our medical center. All the FMT procedures followed uniform standards. Baseline characteristics pre-FMT and follow-up data were collected at 1, 3, 6, 12, 36, 60, and 84 months after FMT. All potential influencing factors for adverse events (AEs) were analyzed and assessed using regression analyses. Results: A total of 70 (13.7%) short-term AEs occurred in twenty-six patients (35.1%). Most AEs (88.5%) occurred within 2 days post-FMT. A total of 91.4% of the AEs were self-limiting. Ulcerative colitis (UC) and within four times of FMT were associated with a higher rate of AEs (p = 0.028 and p = 0.021, respectively). The primary clinical remission rate after FMT was as high as 72.9%. Twenty-five children were followed for more than 5 years after FMT. The clinical remission rates gradually decreased over time after FMT. During follow-up, none of the patients developed autoimmune, metabolic, or rheumatologic disorders or tumor-related diseases. However, nine children developed rhinitis, five developed rhinitis, were underweight, and six developed constipation. Conclusions: FMT is a safe and effective treatment for dysbiosis in children. The long-term efficacy of FMT for each disease decreased over time. Moreover, multiple FMTs are recommended 3 months post-FMT for recurrent diseases.

12.
Plants (Basel) ; 11(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893618

RESUMO

The chloroplast, the energy organelle unique to plants and green algae, performs many functions, including photosynthesis and biosynthesis of metabolites. However, as the most critical tuber crop worldwide, the chloroplast proteome of potato (Solanum tuberosum) has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins were identified in the chloroplast proteome, including 51 proteins encoded by the chloroplast genome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. Sixteen proteins were selected to evaluate the prediction result by transient fluorescence assay, which confirmed that 14 were distributed in distinct internal compartments of the chloroplast. In addition, we identified 136 phosphorylation sites in 61 proteins encoded by chloroplast proteome. Furthermore, we reconstruct the snapshots along starch metabolic pathways in the two different types of plastids by a comparative analysis between chloroplast and previously reported amyloplast proteomes. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of the photosynthesis pathway and starch metabolism.

13.
Front Genet ; 13: 845246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360843

RESUMO

Niemann-Pick disease is a relatively common lysosomal storage disease. Cholestatic liver disease is a typical clinical phenotype of Niemann-Pick disease in infancy. The diagnosis is traditionally based on Niemann-Pick cells in bone marrow smears or liver biopsies. Treatment for cholestatic liver disease mainly includes ursodeoxycholic acid and liver protection drugs. Here, we reported two cases of Niemann-Pick disease type C, diagnosed by genetic analysis during early infancy. Besides cholestatic jaundice, the two patients also exhibited signs of immune system hyperactivity, such as elevated immunoglobulins or multiple autoantibodies, which might require the application of glucocorticoids. In addition, three novel missense variants of the NPC1 gene were identified. The findings suggest that immune activation should be considered as a "new" clinical phenotype of lysosomal storage diseases.

14.
Front Cell Dev Biol ; 9: 626027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33553184

RESUMO

Keloids, as a result of abnormal wound healing in susceptible individuals, are characterized by the hyper-proliferation of fibroblasts and exaggerated deposition of extracellular matrix. Current surgical and therapeutic modalities provide limited satisfactory results. Growing evidence has highlighted the roles of circRNAs in acting as miRNA sponges. However, up to date, the regulatory mechanism of circRNAs in the pathological process of keloids has rarely been reported. In this study, cell proliferation, cell migration, flow cytometry, western blotting, fluorescence in situ hybridization, dual-luciferase activity, and immunohistochemistry assays were applied to explore the roles and mechanisms of the circCOL5A1/miR-7-5p/Epac1 axis in the keloid. The therapeutic potential of circCOL5A1 was investigated by establishing keloid implantation models. The RT-qPCR result revealed that circCOL5A1 expression was obviously higher in keloid tissues and keloid fibroblasts. Subsequent cellular experiments demonstrated that circCOL5A1 knockdown repressed the proliferation, migration, extracellular matrix (ECM) deposition, whereas promoted cell apoptosis, through the PI3K/Akt signaling pathway. Furthermore, RNA-fluorescence in situ hybridization (RNA-FISH) illustrated that both circCOL5A1 and miR-7-5p were located in the cytoplasm. The luciferase reporter gene assay confirmed that exact binding sites were present between circCOL5A1 and miR-7-5p, as well as between miR-7-5p and Epac1. Collectively, the present study revealed that circCOL5A1 functioned as competing endogenous RNA (ceRNA) by adsorbing miR-7-5p to release Epac1, which contributed to pathological hyperplasia of keloids through activating the PI3K/Akt signaling pathway. Our data indicated that circCOL5A1 might serve as a novel promising therapeutic target and represent a new avenue to understand underlying pathogenesis for keloids.

15.
J Surg Res ; 257: 306-316, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890866

RESUMO

BACKGROUND: A keloid is a type of pathological scar often caused by abnormal tissue repair after a skin injury and is more common in genetically susceptible individuals. cAMP is a universal second messenger and regulates critical physiological processes, including calcium homeostasis, secretion, cell fate, and gene transcription, by affecting the expression of the exchange protein directly activated by cAMP (Epac). Epac has two isoforms, Epac1 (cAMP-GEF-1) and Epac2 (cAMP-GEF-II), which show varying expression levels depending on the tissue and cell type. The expression of Epac1 in keloids has not yet been investigated. MATERIALS AND METHODS: Keloid tissue and normal dermal skin tissue were analyzed by hematoxylin and eosin staining and immunofluorescence. Primary human keloid fibroblasts (HKFs) and human normal dermal fibroblasts were studied using immunofluorescence, wound healing tests, reverse transcription polymerase chain reaction, and western blot analysis with different concentrations of the Epac1 inhibitor ESI-09. RESULTS: Downregulation of Epac was performed using ESI-09, a specific Epac inhibitor. The proliferation and migration capacities of HKFs and human normal dermal fibroblasts showed an ESI-09 concentration-dependent decrease. Furthermore, the apoptosis rates were significantly different between fibroblasts treated with ESI-09 and control fibroblasts. In addition, the phosphorylation level of Akt was significantly decreased, indicating that ESI-09 reduces fibrosis and induces apoptosis through Akt signaling in HKFs. CONCLUSIONS: Our results illustrate the role of Epac1 in regulating fibroblast function during keloid pathogenesis and indicate that Epac1 may be a potential therapeutic target in keloid treatment.


Assuntos
Fibroblastos/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Queloide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Derme/citologia , Derme/patologia , Regulação para Baixo , Fibrose , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Hidrazonas/farmacologia , Isoxazóis/farmacologia , Cultura Primária de Células , Isoformas de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Front Microbiol ; 11: 1620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754145

RESUMO

As one of the most detrimental citrus pests worldwide, the citrus red mite, Panonychus citri (McGregor), shows extraordinary fecundity, polyphagia, and acaricide resistance, which may be influenced by microbes as other arthropod pests. However, the community structure and physiological function of microbes in P. citri are still largely unknown. Here, the high-throughput sequencing of 16S rDNA amplicons was employed to identify and compare the profile of bacterial communities across the larva, protonymph, deutonymph, and adult stages of P. citri. We observed a dominance of phylums Proteobacteria and Firmicutes, and classes α-, γ-, ß-Proteobacteria and Bacilli in the bacterial communities across the host lifespan. Based on the dynamic analysis of the bacterial community structure, a significant shift pattern between the immature (larva, protonymph, and deutonymph) and adult stages was observed. Accordingly, among the major families (and corresponding genera), although the relative abundances of Pseudomonadaceae (Pseudomonas), Moraxellaceae (Acinetobacter), and Sphingobacteriaceae (Sphingobacterium) were consistent in larva to deutonymph stages, they were significantly increased to 30.18 ± 8.76% (30.16 ± 8.75%), 20.78 ± 10.86% (18.80 ± 10.84%), and 11.71 ± 5.49% (11.68 ± 5.48%), respectively, in adult stage, which implied the important function of these bacteria on the adults' physiology. Actually, the functional prediction of bacterial communities and Spearman correlation analysis further confirm that these bacteria had positively correlations with the pathway of "lipid metabolism" (including eight sublevel pathways) and "metabolism of cofactors and vitamins" (including five sublevel pathways), which all only increased in adult stages. In addition, the bacterial communities were eliminated by using broad-spectrum antibiotics, streptomycin, which significantly suppressed the survival and oviposition of P. citri. Overall, we not only confirmed the physiological effects of bacteria community on the vitality and fecundity of adult hosts, but also revealed the shift pattern of bacterial community structures across the life stages and demonstrated the co-enhancements of specific bacterial groups and bacterial functions in nutritional metabolism in P. citri. This study sheds light on basic information about the mutualism between spider mites and bacteria, which may be useful in shaping the next generation of control strategies for spider mite pests, especially P. citri.

17.
Sci Rep ; 8(1): 16838, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442959

RESUMO

Chronic exposure to environmental heavy metals is a worldwide health concern. It is acknowledged to be an important cause of lower respiratory tract damage in children. However, the molecular mechanisms underlying the heavy metal-induced cellular stress/toxicity are not completely understood. Small non-coding RNAs (sncRNAs), such as microRNAs (miRNA) and more recently identified tRNA-derived RNA fragments (tRFs), are critical to the posttranscriptional control of genes. We used deep sequencing to investigate whether cellular sncRNA profiles are changed by environmental heavy metals. We found that the treatment of arsenite, an important groundwater heavy metal, leads to abundant production of tRFs, that are ~30 nucleotides (nts) long and most of which correspond to the 5'-end of mature tRNAs. It is unlikely for these tRFs to be random degradation by-products, as the type of induced tRFs is heavy metal-dependent. Three most inducible tRFs and their roles in arsenite-induced cellular responses were then investigated. We identified that p65, an important transcription factor belonging to NF-κB family and also a key factor controlling inflammatory gene expression, is a regulated target of a tRF derived from 5'-end of mature tRNA encoding AlaCGC (tRF5-AlaCGC). tRF5-AlaCGC activates p65, subsequently leading to enhanced secretion of IL-8 in arsenite response. In this study, we also identified that endonuclease Dicer and angiogenin temporally control the induction of tRF5-AlaCGC, providing an insight into the control of tRF biogenesis and subsequently the prevention of cellular damage.


Assuntos
Arsenitos/farmacologia , RNA de Transferência/metabolismo , Sequência de Bases , Linhagem Celular , Humanos , Inflamação/patologia , Metais Pesados/toxicidade , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Ribonuclease III/metabolismo , Ribonuclease Pancreático/metabolismo
18.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185593

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in young children and high-risk adults. However, a specific treatment for this viral infection is not currently available. In this study, we discovered that an exchange protein directly activated by cyclic AMP (EPAC) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, treatment with EPAC inhibitor (ESI-09), but not protein kinase A inhibitor (H89), significantly inhibits RSV replication and proinflammatory cytokine/chemokine induction. In addition, RSV-activated transcriptional factors belonging to the NF-κB and IRF families are also suppressed by ESI-09. Through isoform-specific gene knockdown, we found that EPAC2, but not EPAC1, plays a dominant role in controlling RSV replication and virus-induced host responses. Experiments using both EPAC2 knockout and EPAC2-specific inhibitor support such roles of EPAC2. Therefore, EPAC2 is a promising therapeutic target to regulate RSV replication and associated inflammation.IMPORTANCE RSV is a serious public health problem, as it is associated with bronchiolitis, pneumonia, and asthma exacerbations. Currently no effective treatment or vaccine is available, and many molecular mechanisms regarding RSV-induced lung disease are still significantly unknown. This project aims to elucidate an important and novel function of a protein, called EPAC2, in RSV replication and innate inflammatory responses. Our results should provide an important insight into the development of new pharmacologic strategies against RSV infection, thereby reducing RSV-associated morbidity and mortality.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Vírus Sincicial Respiratório Humano/genética , Replicação Viral/fisiologia , Células A549 , Animais , Linhagem Celular , Quimiocinas/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Humanos , Hidrazonas/farmacologia , Isoquinolinas/farmacologia , Isoxazóis/farmacologia , Camundongos , NF-kappa B/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Infecções por Vírus Respiratório Sincicial/virologia , Sulfonamidas/farmacologia
19.
World J Gastroenterol ; 23(48): 8570-8581, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29358865

RESUMO

AIM: To investigate the impact of fecal microbiota transplantation (FMT) treatment on allergic colitis (AC) and gut microbiota (GM). METHODS: We selected a total of 19 AC infants, who suffered from severe diarrhea/hematochezia, did not relieve completely after routine therapy or cannot adhere to the therapy, and were free from organ congenital malformations and other contraindications for FMT. Qualified donor-derived stools were collected and injected to the AC infants via a rectal tube. Clinical outcomes and follow-up observations were noted. Stools were collected from ten AC infants before and after FMT, and GM composition was assessed for infants and donors using 16S rDNA sequencing analysis. RESULTS: After FMT treatment, AC symptoms in 17 infants were relieved within 2 d, and no relapse was observed in the next 15 mo. Clinical improvement was also detected in the other two AC infants who were lost to follow-up. During follow-up, one AC infant suffered from mild eczema and recovered shortly after hormone therapy. Based on the 16S rDNA analysis in ten AC infants, most of them (n = 6) had greater GM diversity after FMT. As a result, Proteobacteria decreased (n = 6) and Firmicutes increased (n = 10) in post-FMT AC infants. Moreover, Firmicutes accounted for the greatest proportion of GM in the patients. At the genus level, Bacteroides (n = 6), Escherichia (n = 8), and Lactobacillus (n = 4) were enriched in some AC infants after FMT treatment, but the relative abundances of Clostridium (n = 5), Veillonella (n = 7), Streptococcus (n = 6), and Klebsiella (n = 8) decreased dramatically. CONCLUSION: FMT is a safe and effective method for treating pediatric patients with AC and restoring GM balance.


Assuntos
Colite/terapia , Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Colite/imunologia , Colite/microbiologia , Diarreia/imunologia , Diarreia/microbiologia , Diarreia/terapia , Feminino , Seguimentos , Hemorragia Gastrointestinal/imunologia , Hemorragia Gastrointestinal/microbiologia , Hemorragia Gastrointestinal/terapia , Humanos , Lactente , Masculino , Recidiva , Resultado do Tratamento
20.
Virology ; 499: 361-368, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27743962

RESUMO

Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Motivos de Aminoácidos , Linhagem Celular , Humanos , Metapneumovirus/química , Metapneumovirus/genética , Infecções por Paramyxoviridae/virologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA