Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Anal Chim Acta ; 1292: 342243, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309847

RESUMO

BACKGROUND: Dichlorvos (DDVP), as a highly effective insecticide, is widely used in agricultural production. However, DDVP residue in foodstuffs adversely affects human health. Conventional instrumental analysis can provide highly sensitive and accurate detection of DDVP, while the need of bulky and expensive equipment limits their application in resource-poor areas and on-site detection. Therefore, the development of easily portable sensing platforms for convenient, rapid and sensitive quantification of DDVP is very essential for ensuring food safety. RESULT: A portable colorimetric sensing platform for rapid and sensitive quantification of DDVP is developed based on nanozyme-participated highly efficient chromogenic catalysis. The Fe-Mn bimetallic oxide (FeMnOx) nanozyme possesses excellently oxidase-like activity and can efficiently catalyze oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) into a blue oxide with a very low Michaelis constant (Km) of 0.0522 mM. The nanozyme-catalyzed chromogenic reaction can be mediated by DDVP via inhibiting the acetylcholinesterase (AChE) activity. Thus, trace DDVP concentration-dependent color evolution is achieved and DDVP can be sensitively detected by spectrophotometry. Furthermore, a smartphone-integrated 3D-printed miniature lightbox is fabricated as the colorimetric signal acquisition and processing device. Based on the FeMnOx nanozyme and smartphone-integrated lightbox system, the portable colorimetric sensing platform of DDVP is obtained and it has a wide linear range from 1 to 3000 ng mL-1 with a low limit of detection (LOD) of 0.267 ng mL-1 for DDVP quantification. SIGNIFICANCE: This represents a new portable colorimetric sensing platform that can perform detection of DDVP in foodstuffs with simplicity, sensitivity, and low cost. The work not only offers an alternative to rapid and sensitive detection of DDVP, but also provides a new insight for the development of advanced sensors by the combination of nanozyme, 3D-printing and information technologies.


Assuntos
Diclorvós , Praguicidas , Humanos , Colorimetria , Óxidos , Acetilcolinesterase , Catálise , Peróxido de Hidrogênio
2.
Anal Biochem ; 679: 115297, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619903

RESUMO

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are associated with various complex human diseases. They can serve as disease biomarkers and hold considerable promise for the prevention and treatment of various diseases. The traditional random walk algorithms generally exclude the effect of non-neighboring nodes on random walking. In order to overcome the issue, the neighborhood constraint (NC) approach is proposed in this study for regulating the direction of the random walk by computing the effects of both neighboring nodes and non-neighboring nodes. Then the association matrix is updated by matrix multiplication for minimizing the effect of the false negative data. The heterogeneous lncRNA-disease network is finally analyzed using an unbalanced random walk method for predicting the potential lncRNA-disease associations. The LUNCRW model is therefore developed for predicting potential lncRNA-disease associations. The area under the curve (AUC) values of the LUNCRW model in leave-one-out cross-validation and five-fold cross-validation were 0.951 and 0.9486 ± 0.0011, respectively. Data from published case studies on three diseases, including squamous cell carcinoma, hepatocellular carcinoma, and renal cell carcinoma, confirmed the predictive potential of the LUNCRW model. Altogether, the findings indicated that the performance of the LUNCRW method is superior to that of existing methods in predicting potential lncRNA-disease associations.


Assuntos
Neoplasias Renais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Algoritmos , Área Sob a Curva , Caminhada
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123123, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37441956

RESUMO

As a common raw material of industrial products, bisphenol A (BPA) is widely used in the production of food contact materials, and there is a high risk of exposure in food. However, BPA is a well-known endocrine disruptor and poses a serious threat to human health. Herein, a fluorescent sensing platform of BPA based on enzymatic oxidation-mediated fluorescence quenching of silicon nanoparticles (SiNPs) is established and used to the detection of BPA in food species. The SiNPs are prepared with a facile one-step synthesis and emit bright green fluorescence. BPA can be oxidized by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) to form a product which can quench the fluorescence of SiNPs through electron transfer. There is a good linear relationship between the fluorescence intensity and BPA concentration in the range of 1-100 µM. Therefore, a fluorometry of BPA is established with a low limit of detection (LOD) of 0.69 µM. This method has been applied to the determination of BPA in mineral drinking water, orange juice, and milk with satisfactory results. The fluorescent sensor of BPA based on SiNPs has favorable application foreground in the field of food safety analysis.


Assuntos
Nanopartículas , Silício , Humanos , Espectrometria de Fluorescência/métodos , Peróxido de Hidrogênio/análise , Corantes Fluorescentes
4.
Anal Methods ; 14(43): 4300-4308, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36268819

RESUMO

Dual-mode sensing with a two-signal read-out is conducive to the improvement of detection accuracy. Herein, a fluorescent and scattering dual-mode chemosensor for tetracycline (TC) is proposed based on a carbon dot@cerium-guanosine monophosphate (CD@GMP-Ce) coordination polymer network. The inexpensive CD@GMP-Ce was prepared by exploiting the adaptive inclusion capability of coordination polymers and possessed remarkable fluorescence and strong Rayleigh scattering. The functional CD@GMP-Ce demonstrated fluorescence and scattering, the two optical-signal responses to TC simultaneously. Based on TC-specific fluorescence and scattering decline, the dual-mode detection of TC was established and the probe's detection limits were 43 nM in the fluorescence mode and 77 nM in the scattering mode, respectively. Furthermore, the potential application of the dual-mode sensor was verified by measuring TC in milk and tap-water samples. The study not only provides a new perspective for the development of assay methods for TC but also expands the applications of cerium coordination polymers.


Assuntos
Cério , Polímeros , Guanosina Monofosfato , Carbono , Espectrometria de Fluorescência/métodos , Tetraciclina , Antibacterianos , Corantes Fluorescentes
5.
Environ Pollut ; 305: 119308, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35443204

RESUMO

Numerous epidemiological studies have shown a close relationship between outdoor air pollution and increased risks for cancer, infection, and cardiopulmonary diseases. However, very few studies have investigated the potential health effects of coexposure to airborne particulate matter (PM) and bioaerosols through the transmission of infectious agents, particularly under the current circumstances of the coronavirus disease 2019 pandemic. In this study, we aimed to identify urinary metabolite biomarkers that might serve as clinically predictive or diagnostic standards for relevant diseases in a real-time manner. We performed an unbiased gas/liquid chromatography-mass spectroscopy (GC/LC-MS) approach to detect urinary metabolites in 92 samples from young healthy individuals collected at three different time points after exposure to clean air, polluted ambient, or purified air, as well as two additional time points after air repollution or repurification. Subsequently, we compared the metabolomic profiles between the two time points using an integrated analysis, along with Kyoto Encyclopedia of Genes and Genomes-enriched pathway and time-series analysis. We identified 33 and 155 differential metabolites (DMs) associated with PM and bioaerosol exposure using GC/LC-MS and follow-up analyses, respectively. Our findings suggest that 16-dehydroprogesterone and 4-hydroxyphenylethanol in urine samples may serve as potential biomarkers to predict or diagnose PM- or bioaerosol-related diseases, respectively. The results indicated apparent differences between PM- and bioaerosol-associated DMs at five different time points and revealed dynamic alterations in the urinary metabolic profiles of young healthy humans with cyclic exposure to clean and polluted air environments. Our findings will help in investigating the detrimental health effects of short-term coexposure to airborne PM and bioaerosols in a real-time manner and improve clinically predictive or diagnostic strategies for preventing air pollution-related diseases.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomarcadores/análise , Humanos , Material Particulado/análise , Adulto Jovem
6.
MethodsX ; 7: 101155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304835

RESUMO

• Smart usage of single molecule photobleaching technology and dual-color fluorescence colocalization is of critical importance for exploiting the sensing platform. Here, we provide the detailed protocols related to the article "A split aptamer sensing platform for highly sensitive detection of theophylline based on dual-color fluorescence colocalization and single molecule photobleaching" (published online by Biosensors and Bioelectronics) (Liu et al., 2020). The protocols contain: (1) how to clean the slides; (2) how to prepare the probe and detection sample; (3) Single molecule imaging; 4) Data processing by using the Image J. Finally, we used a simple model to confirm the feasibility of the method for integrating dual-color fluorescence colocalization and single molecule photobleaching technology on the theophylline sensing platform. • A simple, ultrasensitive method for the detection of theophylline. • The method is easily comprehensible. • Both strategy formulation and data processing are simple, learnability, and highly reproducible.

7.
ACS Appl Mater Interfaces ; 12(41): 47099-47107, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33003698

RESUMO

Development of selective and sensitive methods for on-site assay of tetracycline (TC) is of great significance for public health and food safety. Herein, a valid ratiometric fluorescence strategy using g-C3N4 nanosheets coupled with Eu3+ is designed for the assay of TC. In this strategy, both Eu3+ and g-C3N4 nanosheets serve as the recognition units of TC. The blue fluorescence of g-C3N4 nanosheets can be quenched by TC via the inner filter effect (IFE); meanwhile, the red fluorescence of Eu3+ can be enhanced by TC through the antenna effect (AE). The synergistic effect of AE and IFE caused by TC makes the developed ratiometric fluorescent sensor display a wide linear range for TC from 0.25 to 80 µM with a detection limit of 6.5 nM and a significant fluorescence color evolution from blue to red. Given its simplicity, free-label, excellent selectivity, high sensitivity, and recognizable color change, point-of-care testing systems, including smartphones and test paper-based assays, are developed for the visual sensing of TC. The integration of smartphones and test paper on a ratiometric fluorescent sensor greatly reduces the detection cost and time, providing a promising method for the qualitative discernment and semi-quantitative assay of TC on-site. Moreover, the potential application of the approach is also verified by detecting TC in milk.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes/química , Papel , Smartphone , Tetraciclina/análise , Animais , Európio/química , Leite/química , Conformação Molecular , Nitrilas/química , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
8.
Biosens Bioelectron ; 166: 112461, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32745928

RESUMO

A new split aptamer sensing platform is developed for highly sensitive and selective detection of theophylline based on single molecule photobleaching (SMPB) technique. The sensing system contains two probes. One is formed by one streptavidin and four biotinylated RNA fragments labelled with fluorescein isothiocyanate (FITC). Each biotinylated RNA fragment contains two repeating aptamer fragments. The other probe is the complementary aptamer fragment labelled with Cy5 dye. The existence of theophylline can trigger the first probe to bind as many as eight Cy5-labelled probes. The average combined number depends on the theophylline concentration and can be measured by SMPB technique. In the sensing system, the dual-color fluorescence colocalization is performed by the red fluorophore (Cy5) and green fluorophore (FITC), in which the red fluorophore is utilized for quantitative counting of photobleaching steps, while the green fluorophore serves as a counting reference to increase detection efficiency. On basis of the principle, an ultra-sensitive sensing platform of theophylline is created with a low limit of detection (LOD) of 0.092 nM. This work provides not only a highly sensitive method for theophylline detection but also a novel perspective for the applications of SMPB technology to construct biosensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Limite de Detecção , Fotodegradação , Teofilina
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 238: 118412, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32388232

RESUMO

Ascorbic acid (AA) is an important diet-derived antioxidant to human body. Thus, efficient and accurate detection of AA is of considerable significance in food analysis. Herein, smartphone assisted colorimetric and fluorescent triple-channel signal sensor has been developed for AA monitoring based on oxidase-like CoOOH nanoflakes. CoOOH nanoflakes can efficiently catalyze the oxidation of p-phenylenediamine (p-PD) into reddish brown p-PDox. The carbon dots (C-dots) are further introduced, of which the fluorescence can be quenched by p-PDox. However, in the presence of AA, the CoOOH nanoflakes is reduced and thus collapsed. As a result, the oxidation of p-PD is restrained, and thus the fluorescence of C-dots keeps strong. Based on AA induced light color, low absorbance, and strong fluorescence, triple-channel signal sensor has been proposed for AA determination. The AA assay shows a dynamic response range from 0.5 to 10 µM with a detection limit of 0.09 µM. The method assay allows detection of AA in real samples such as fruit juices. Combination with portable smartphone, the developed sensor is potential for AA determination in resource-poor settings.


Assuntos
Ácido Ascórbico/análise , Cobalto/química , Análise de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Nanoestruturas/química , Óxidos/química , Colorimetria/métodos , Nanoestruturas/ultraestrutura , Oxirredução , Oxirredutases/química , Fenilenodiaminas/química , Smartphone
10.
Anal Bioanal Chem ; 412(18): 4375-4382, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32358647

RESUMO

Ratiometric assays, which can effectively surmount external interference, have attracted extensive research interests. Herein, a novel ratiometric sensing platform for Hg2+ is designed based on nitrogen-doped carbon dots (N-CDs) with two different optical signals. Under a single excitation, N-CDs have two emission peaks around 668 nm and 412 nm, which are second-order scattering and fluorescence, respectively. Upon the addition of Hg2+, the weak scattering emission at 668 nm can be increased apparently, while the strong fluorescence intensity at 412 nm is weakened. Moreover, the ratio of scattering intensity to fluorescence intensity is linearly dependent on Hg2+ concentration (0.1-10 µM and 10-30 µM, respectively), and the detection limit is 66 nM. In addition, the ratiometric sensing mechanism is investigated in detail, which is due to the combined effect of aggregation-induced fluorescence quenching and scattering enhancement. Furthermore, the developed sensing approach holds a promising application for Hg2+ detection in actual samples. Graphical abstract.

11.
Mater Sci Eng C Mater Biol Appl ; 108: 110401, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923930

RESUMO

Intracellular pH level plays an important role in physiological and pathological processes. The development of nanoprobes for detecting in vivo pH levels is especially important for early diagnosis of disease. Therefore, we develop a hydrophilic carbon points (CDs) using quercetin and ethylenediamine as precursors to monitor intracellular pH. Under optimized conditions, the prepared CDs not only have uniform particle size and morphology, but also possess strong green fluorescence, photostability, and photoreversibility in water medium. The CDs exhibit pH-sensitive fluorescence effect under acidic and alkaline conditions, which is used to achieve "off-on-off" detection pH (from 3.5 to 13.5). Meanwhile, the pH-dependent mechanism is further investigated and explained, which is the fluorescence quenching caused by the pH-induced aggregation. Based on the pH-sensitive characteristics of CDs, it has been applied to the detection of aspartic acid and glutamic acid. More importantly, when applied to live cells, the pH-probe exhibits low cytotoxicity and high sensitivity, and is successfully used in intracellular pH fluorescence imaging. Consequently, this nanoprobe is expected to be used for real-time monitoring of intracellular pH level.


Assuntos
Aminoácidos Acídicos/análise , Carbono/química , Pontos Quânticos/química , Fluorescência , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ponto Isoelétrico , Tamanho da Partícula , Pontos Quânticos/toxicidade , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Análise Espectral Raman , Difração de Raios X
12.
Anal Sci ; 35(10): 1149-1153, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31281134

RESUMO

A resonance Rayleigh scattering (RRS) technique was utilized as a tool for isoelectric point monitoring and iron(III) cation determination. The spectral properties of some amphoteric molecules (proteins and a DNA sequence) were investigated using the RRS technique. When the pH values were kept at around their isoelectric points, especially high RRS signals could be obtained, which were much stronger than those at other pH values. By using the C30 DNA sequence as a probe, the iron(III) cation can be detected rapidly. After iron(III) was added to a C30 solution, a significantly decreased RRS signal was obtained. The sensing process can be finished within 10 min with a detection limit of 0.9 µM. Thus, a sensitive, selective, and label-free method was successfully developed for iron(III) detection.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117300, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284240

RESUMO

Copper is an essential mineral nutrient for the human body. However, excessive levels of copper accumulated in the body can cause some diseases. Therefore, it is great significant to establish a sensitive bioprobe to recognize copper ions (Cu2+) in vivo. In our work, nitrogen-doped carbon dots (N-CDs) and gold nanoclusters (Au NCs) are selected as luminescent nanomaterials and the Au NCs/N- CDs nanohybrids is successfully synthesized by coupling method. The Au NCs/N-CDs exhibited characteristic dual-emission peaks at 450 and 620 nm when excited by a single-wavelength of 380 nm. When different amounts of Cu2+ are introduced, the fluorescence intensity of the Au NCs is gradually weakened and fluorescence intensity of the N-CDs is almost unchanged, which can facilitate the visual detection of Cu2+. The Au NCs/N-CDs nanohybrid possesses good selectivity to Cu2+ with a limit of detection (LOD) is 3.5 µM and linear detection range of 10-150 µM. Visualization detection of Cu2+ is implemented by using nanoprobe in water samples. Furthermore, the ratiometric nanoprobe is utilized to the toxicity test of liver cancer cells, indicating excellent biocompatibility and low toxicity. This nanoprobe has been used to the intracellular fluorescence imaging. Moreover, this method is expected to be used to monitor the changes of Cu2+ concentration in hepatocytes.


Assuntos
Cobre/análise , Espaço Intracelular/metabolismo , Sondas Moleculares/química , Nanopartículas/química , Imagem Óptica , Carbono/química , Ouro/química , Células Hep G2 , Humanos , Nitrogênio/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Água/química
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117260, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31226617

RESUMO

In this work, sodium salicylate and ethylenediamine (EDA) are used as the precursors to synthesize green fluorescent carbon dots (CDs). The CDs have some attractive properties, including better oxidation resistance, good water solubility, and excellent stability in high ionic strength solutions in a pH range of 6.0-10.0. Compared to other metal ions, only Hg2+ can quench the fluorescence of CDs, and with the introduction of biothiols, the fluorescence of the CDs/Hg2+ system can be recovered. Therefore, a turn off/on fluorescent sensor is constructed using CDs as a fluorescent probe, and the sensor is applied to the detection of Hg2+ and biothiols (glutathione, homocysteine and cysteine). In addition, the fluorescent sensor exhibits excellent selectivity and sensitivity. The linear range of Hg2+ is 0.05-10 µM with the detection limit of 44 nM. Glutathione, homocysteine, and cysteine have a linear response in the range of 0.5-10 µM with the limit of detection of 80, 76, and 69 nM, respectively. Furthermore, the fluorescence method is successfully used to detect Hg2+ in actual water samples and biothiols in human plasma.


Assuntos
Cisteína/sangue , Glutationa/sangue , Homocisteína/sangue , Mercúrio/análise , Pontos Quânticos/química , Poluentes Químicos da Água/análise , Carbono/química , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Pontos Quânticos/ultraestrutura , Espectrometria de Fluorescência/métodos
15.
Inorg Chem ; 58(13): 8388-8395, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247864

RESUMO

Rapid and sensitive detection of surfactants has attracted more and more attention since surfactants not only cause water pollution but also affect the health of human beings. Luminescent metal-organic frameworks combining unique optical property and inherent permanent porosity for guest-host encapsulation are widely used in fluorescence detection. Here we report a ratiometric fluorescent probe (denoted as UiO-66-NH2@PB) based on a Zr-based metal-organic framework (UiO-66-NH2) and a fluorescent dye, phloxine B (PB), for visual and fluorescent determination of cationic surfactants (cetyltrimethylammonium bromide; CTAB). The intensity ratio of dual-emission sensor exhibits a linear response to the CTAB concentrations of 0.1-17 µM and obtains a low detection limit (0.074 µM). Moreover, this method has been successfully utilized to monitor CTAB in the environmental water samples with satisfied recoveries. Importantly, this work provides a new insight into developing smartphone-based sensor to realize a rapid, on-site visual and quantification-based detection of CTAB.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 382-390, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059890

RESUMO

Ammonia concentration together with pH values are important and closely linked indexes for aqueous systems. Rapid on-site determination of ammonia or pH is of great significance to environmental monitoring. In this work, a pH-switchable nanoprobe based on biomass carbon dots (CDs) is developed using a smartphone as a simple and handy instrument. The CDs demonstrate sensitive pH response in wide linear ranges of 6.1-13.6, and 2.0-13.6 with colorimetric and fluorescent channels, respectively. It is the pH-induced aggregation that governs the color and fluorescence switch. With the pH evolution caused by the dissolution of ammonia, the smartphone-integrated nanoprobe is applied to ammonia detection with a broad range of 0.5-300 mM. Moreover, the headspace single drop microextraction strategy can concentrate ammonia from matrix, offering a remarkably high selectivity for ammonia determination. Finally, the practical applications of this method for ammonia analysis obtained satisfactory results.

17.
J Hazard Mater ; 376: 170-177, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128396

RESUMO

Sensitive and selective determination of mercury ion (Hg2+) is critical for human health and environmental monitoring. Herein we construct an effective ratiometric fluorescent sensing platform by combining green fluorescent polymer carbon dots (PCDs) and red fluorescent tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) for specific and visual detection of Hg2+. The fluorescence of PCDs can be quenched by TPPS through inner filter effect (IEF). In the presence of both Mn2+ and Hg2+, however, Hg2+ can expedite the complexation of TPPS and Mn2+, which causes the decrease in both fluorescence and absorption of TPPS, accompanied by the fluorescence recovery of PCDs due to the subdued IFE between TPPS and PCDs. Based on the change of fluorescence signal, a ratiometric fluorescent sensing platform is constructed for specific and visual detection of Hg2+. The proposed approach presents a fine linear range for Hg2+ over the range of 10-200 nM with a detection limit of 0.038 nM. Moreover, an easily distinguishable fluorescence color change from pink to green with the increase of Hg2+ concentration can be observed by the naked eye under a UV lamp. Such a simple and effective method shows great potential for visual sensing of Hg2+ in on-site and resource-limited settings.

18.
Anal Bioanal Chem ; 411(15): 3301-3308, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31011784

RESUMO

We present a facile method for the preparation of red-emitting and water-soluble silver nanoclusters (Ag NCs) using dihydrolipoic acid and sodium borohydride as the template and reducing agent. Ethanol solvent is demonstrated to endow Ag NCs with dramatically enhanced fluorescence; therefore, the Ag NCs are synthesized in ethanol/water solution (e/w-Ag NCs) instead of aqueous solution. Specific trivalent chromium (Cr3+) recognition capability of the e/w-Ag NCs can thus be obtained on the basis of its fluorescence quenching. The mechanisms for fluorescence enhancement and quenching of the e/w-Ag NCs triggered by ethanol and Cr3+, respectively, are investigated in detail. Next, a fluorescence method for detection of Cr3+ is established and its analytical performance is evaluated: the detection limit for Cr3+ is 0.71 µM and the linear range is from 2 to 40 µM. The fluorescent probe exhibits sufficient sensitivity and good selectivity toward Cr3+, illustrating that it has great promise for practical application in Cr3+ detection.

19.
Mikrochim Acta ; 186(3): 156, 2019 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-30712118

RESUMO

A hybrid material composed of guanine-rich single stranded DNA (G-rich ssDNA) and cobalt oxyhydroxide (CoOOH) nanosheets is used as a nanoprobe for fluorometric turn-on detection of ascorbic acid (AA). The CoOOH nanosheets function as a recognition component for AA. The G-rich ssDNA is used to produce a G-quadruplex, and the G-quadruplex/thioflavin T (ThT) complex acts as a fluorescent reporter. In the absence of AA, p-phenylenediamine (PPD) is oxidized to form oxPPD which has a dark red color. It causes the fluorescence of the G-quadruplex/ThT complex to be quenched. However, in the presence of AA, the CoOOH nanosheets of the nanoprobe are preferentially reduced by AA. Hence, PPD is not oxidized, and fluorescence is not quenched. A fluorometric turn-on method was developed based on these findings. It has a detection limit of 94 nM and works in the concentration range from 1 to 10 and 20 to 80 µM. This method was applied to the determination of AA in (spiked) fruit juice samples. Graphical abstract Schematic presentation of a fluorescent assay of ascorbic acid (AA) is established using a nanoprobe composed of guanine-rich single stranded DNA (G-rich ssDNA) and cobalt oxyhydroxide (CoOOH) nanosheets. It is based on competitive reduction of CoOOH by p-phenylenediamine (PPD) and AA. Thioflavine T (ThT) induces the formation of fluorescent G-quadruplex/ThT complex. The oxidized form of PPD (oxPPD) can quench the fluorescence via fluorescence resonance energy transfer (FRET), but AA suppresses quenching.

20.
Anal Chim Acta ; 1055: 81-89, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30782374

RESUMO

Ratiometric sensing suffers from less interference and can obtain more accurate results than single-signal assay. Here, a new ratiometric optical sensing strategy for H2O2 detection is developed by etching silver nanoparticles (AgNPs) to deactivate fluorescence resonance energy transfer (FRET) and reduce Rayleigh scattering based on a hyphenated technique of fluorescence and second-order Rayleigh scattering (SRS). The ratiometric detection of H2O2 is achieved through exploiting a hybrid system fabricated by fluorescent carbon dots and silver nanoparticles (CDs/AgNPs). In the CDs/AgNPs system, the fluorescence of CDs is quenched because of FRET, and the scattering is strong due to the intrinsic high light-scattering power of AgNPs. With the introduction of H2O2, the AgNPs are etched and the CDs are released from the AgNP surface, resulting in the fluorescence enhancement and scattering decline. As a result, ratiometric sensing of H2O2 can be achieved based on the CDs/AgNPs system by simultaneous collection of fluorescence and SRS signals. The sensing system is further used for H2O2-generation bioanalysis, and as a proof-of-concept, ratiometric assay of glucose and evaluation of glucose oxidase activity are performed successfully. This work provides a new perspective for sensing applications of plasmonic nanoparticles.


Assuntos
Técnicas Biossensoriais/instrumentação , Carbono/química , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Dispositivos Ópticos , Pontos Quânticos/química , Glicemia/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Limite de Detecção , Modelos Moleculares , Oxirredução , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA