Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(10): 2797-2800, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748164

RESUMO

The existing methods fail to effectively utilize the viewpoint information of light field 3D images for watermark embedding which results in a serious decrease in both invisibility and robustness of the watermark. Therefore, we propose a novel, to the best of our knowledge, light field 3D dual-key-based watermarking network (3D-DKWN). Our method employs a pixel mapping algorithm to obtain the disparity sub-image of the light field 3D image and generates an encoding key (EK). Adaptive watermark embedding is then performed on the disparity sub-image and a steganographic key (SK) is generated. Finally, the light field 3D image with the embedded watermark is reconstructed. Compared with previous approaches, our method reasonably utilizes the viewpoint information of light field 3D images, resulting in the significant improvement of invisibility and robustness of the watermark.

2.
Small ; : e2401942, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593325

RESUMO

Solar energy conversion technologies, particularly solar-driven photothermal conversion, are both clean and manageable. Although much progress has been made in designing solar-driven photothermal materials, significant challenges remain, not least the photobleaching of organic dyes. To tackle these issues, micro-carbonized polysaccharide chains, with carbon dots (CDs) suspended from the chains, are conceived, just like grapes or tomatoes hanging from a vine. Carbonization of sodium carboxymethyl cellulose (CMC) produces just such a structure (termed CMC-g-CDs), which is used to produce an ultra-stable, robust, and efficient solar-thermal film by interfacial interactions within the CMC-g-CDs. The introduction of the CDs into the matrix of the photothermal material effectively avoided the problem of photobleaching. Manipulating the interfacial interactions (such as electrostatic interactions, van der Waals interactions, π-π stacking, and hydrogen bonding) between the CDs and the polymer chains markedly enhances the mechanical properties of the photothermal film. The CMC-g-CDs are complexed with Fe3+ to eliminate leakage of the photothermal reagent from the matrix and to solve the problem of poor water resistance. The resulting film (CMC-g-CDs-Fe) has excellent prospects for practical application as a photothermal film.

3.
Angew Chem Int Ed Engl ; : e202404454, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683297

RESUMO

Sustainable carbon dots comprising surficial oxime ester groups following homolytic bond cleavage exhibit potential as photoinitiators for traditional free radical photopolymerization. Carbon dots were made following a solvothermal procedure from sustainable furfural available from lignocellulose. Surficial aldehyde moieties reacted with hydroxylamine to the respective oxime while reaction with benzoyl chloride resulted in a biobased Type I photoinitiator comprising sustainable carbon dot (CD-PI). Photoinitiating ability was compared with the traditional photoinitiator (PI) ethyl (2,4,6-trimethyl benzoyl) phenyl phosphinate (TPO-L) by real-time FTIR with UV exposure at 365 nm. Photopolymer composition based on a mixture of urethane dimethacrylate (UDMA) and tripropylene glycol diethacrylate (TPGDA) resulted in a similar final conversion of about 70% using either CD-PI or TPO-L. Nevertheless, it appeared homogeneous in the case of compositions processed with CD-PI, while those made with TPO-L were heterogeneous as shown by two glass transition temperatures. Moreover, the migration rate of CD-PI in the cured samples was lower in comparison with those samples using TPO-L as PI.

4.
Heliyon ; 10(8): e28257, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655314

RESUMO

In this work, magnetic molecularly imprinted polymers (MIPs) for specific recognition of Hydroxytyrosol (HT) were designed by vinyl-modified magnetic particles (Fe3O4@SiO2@VTEOs) as carrier, ternary deep eutectic solvent (DES) as functional monomer, while ethylene glycol dimethacrylate (EGDMA) as crosslinker. The optimum amount of DES was obtained by adsorption experiments (molar ratio, caffeic acid: choline chloride: formic acid = 1:6:3) which were 140 µL in total. Under the optimized amount of DES, the maximum adsorption capacity of the MIPs particles was 42.43 mg g-1, which was superior to non-imprinted polymer (4.64 mg g-1) and the imprinting factor (IF) is 9.10. Syringin and Oleuropicrin were used as two reference molecules to test the selectivity of the DES-MIPs particles. The adsorption capacity of HT was 40.11 mg g-1. Three repeated experiments show that the polymer has high stability and repeatability (RSD = 5.50).

5.
Nat Commun ; 15(1): 2375, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490985

RESUMO

There is interest in developing sustainable materials displaying circularly polarized room-temperature phosphorescence, which have been scarcely reported. Here, we introduce biobased thin films exhibiting circularly polarized luminescence with simultaneous room-temperature phosphorescence. For this purpose, phosphorescence-active lignosulfonate biomolecules are co-assembled with cellulose nanocrystals in a chiral construct. The lignosulfonate is shown to capture the chirality generated by cellulose nanocrystals within the films, emitting circularly polarized phosphorescence with a 0.21 dissymmetry factor and 103 ms phosphorescence lifetime. By contrast with most organic phosphorescence materials, this chiral-phosphorescent system possesses phosphorescence stability, with no significant recession under extreme chemical environments. Meanwhile, the luminescent films resist water and humid environments but are fully biodegradable (16 days) in soil conditions. The introduced bio-based, environmentally-friendly circularly polarized phosphorescence system is expected to open many opportunities, as demonstrated here for information processing and anti-counterfeiting.

6.
Eur J Med Chem ; 269: 116296, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38467086

RESUMO

Steroid hybrids have emerged as a type of advantageous compound as they could offer improved pharmacological and pharmaceutical properties. Here, we report a series of novel peptide-dehydroepiandrosterone hybrids, which would effectively induce endoplasmic reticulum stress (ERS) and lead to apoptosis with outstanding in vitro and in vivo anti-melanoma effects. The lead compound IId among various steroids conjugated with peptides and pyridines showed effective in vivo activity in B16 xenograft mice: in medium- and high-dose treatment groups (60 and 80 mg/kg), compound IId would significantly inhibit the growth of tumours by 98%-99% compared to the control group, with the highest survival rate as well. Further mechanism studies showed that compound IId would damage the endoplasmic reticulum and upregulate the ERS markers C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), which could further regulate caspase and Bcl-2 family proteins and lead to cell apoptosis. The compound IId was also proven to be effective in inhibiting B16 cell migration and invasion.


Assuntos
Apoptose , Retículo Endoplasmático , Humanos , Camundongos , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Peptídeos/farmacologia , Desidroepiandrosterona/metabolismo , Desidroepiandrosterona/farmacologia
7.
Nat Commun ; 15(1): 1590, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383517

RESUMO

Photocured room temperature phosphorescent (RTP) materials hold great potential for practical applications but are scarcely reported. Here, we develop photocured RTP materials (P-Lig) using a combination of lignosulfonate, acrylamide, and ionic liquid (1-ethyl-3-methylimidazolium bromide). With this design, lignosulfonate simultaneously serves as RTP chromophore and photoinitiator. Specifically, lignosulfonate in the ionic liquid generates radicals to polymerize the acrylamide upon UV irradiation. The resulting lignosulfonate is automatically confined in an as-formed crosslinked matrix to provide RTP. As such RTP with an emission lifetime of ~110 ms is observed from the confined lignosulfonate in P-Lig. Additionally, energy transfer occur between P-Lig and Rhodamine B (RhB), triggering red afterglow emission when P-Lig is in situ loaded with RhB (P-Lig/RhB). As a demonstration of potential applications, the P-Lig and P-Lig/RhB are used as photocured RTP coatings and RTP inks for fabricating 3D materials and for information encryption.

8.
Org Lett ; 26(6): 1218-1223, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38319139

RESUMO

A mild and efficient method for lignin ß-O-4 cleavage and functionalization was achieved via photocatalysis. This protocol exhibits a broad scope of lignin models and excellent compatibility of functionalization reagents, constructing a series of functionalized lignin-based aromatic compounds. Highly selective formation of alkyl radical species through a proton-coupled electron transfer and ß-scission process provides the opportunity to form new C-C and C-N bonds by reaction with electrophilic reagents.

9.
ChemSusChem ; 17(9): e202301324, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38199959

RESUMO

The highly toxic and flammable nature of CO lead to high handling demand for its use and storage, undoubtedly constricting its further academic exploration for carbonylative reactions in laboratory. Although many CO surrogates have been developed and applied in carbonylative reactions instead of CO gas, exploration of more versatile CO surrogates for diverse carbonylations is still highly desirable. Here we report a cellulose-based CO surrogate (cellulose-CO), which prepared from cheap and abundant cellulose through a simple and green process. The very mild and efficient CO release makes this reagent a highly competitive candidate for providing CO in carbonylation. This surrogate is compatible with a wide variety of functional groups in various carbonylative reactions due to the excellent compatibility of cellulose-CO. Moreover, the cellulose-CO exhibits excellent chemical stability which can be stored exposed to air for 12 months, making this CO surrogate a robust and general reagent in CO chemistry.

10.
Adv Mater ; 36(12): e2209479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652538

RESUMO

The effective management of atmospheric water will create huge value for mankind. Diversified and sustainable biopolymers that are derived from organisms provide rich building blocks for various hygroscopic materials. Here, a comprehensive review of recent advances in developing biopolymers for hygroscopic materials is provided. It is begun with a brief introduction of species diversity and the processes of obtaining various biopolymer materials from organisms. The fabrication of hygroscopic materials is then illustrated, with a specific focus on the use of biopolymer-derived materials as substrates to produce composites and the use of biopolymers as building blocks to fabricate composite gels. Next, the representative applications of biopolymer-derived hygroscopic materials for dehumidification, atmospheric water harvesting, and power generation are systematically presented. An outlook on future challenges and key issues worthy of attention are finally provided.

11.
Angew Chem Int Ed Engl ; 63(18): e202316431, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38012084

RESUMO

Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.

12.
Carbohydr Polym ; 326: 121595, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142070

RESUMO

Interfacial polyelectrolyte complexation spinning is an all-water, easy-to-operate method for production of composite filaments. Herein, this concept is extended to interfacial polyelectrolyte-emulsion complexation (IPEC) that better encodes structural and functional attributes of biomass substances into the filaments. This allows for formation of composite filaments by drawing contacting oppositely-charged chitin nanofiber-stabilized Pickering emulsion and seaweed alginate solution. The parameters affecting spinnability of the system including water-to-oil ratio, alginate concentration, and pH are comprehensively elucidated to support the design and application of IPEC. The composite filaments exhibit varied diameters and diverse porous structures that are adjustable by properties of Pickering droplets. The droplet diameter of precursor emulsion and pore size in the filaments are well correlated, revealing controllability of the IPEC spinning. The filaments are mechanically robust in dry condition and show stable performance even in wet condition. The release rate of filaments that is pre-loaded with hydrophilic drug is regulated by the internal pore size, showing capability on sustained release. This study offers a new perspective toward dry spinning via interfacial complexation of complicated nanochitin-based structural building blocks, aiming at developing high-performance fiber materials for advanced applications.

13.
iScience ; 26(11): 108167, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37920663

RESUMO

Photocatalytic depolymerization is a high value-added approach for utilization of lignin. In this study, magnetic microspheres of FeCoRu@SiO2-TiO2 were synthesized by a co-precipitation method. Doping with CoOx and RuOx was used to improve the response to visible light, and doping with TiO2 was used to improve the response to ultraviolet light (λ < 380 nm). The lignin model compound depolymerization rate was >90%. The electron paramagnetic resonance results showed that the reaction occurred in two steps (aerobic phase and oxygen-free phase). Most of the O2- was produced in the first step by cleavage of C-O bonds. The second step was inhibited in an oxygen-free atmosphere. This research provides a valid method for enhancing the photocatalytic properties using full-spectrum light and exploring the lignin photocatalytic depolymerization mechanism. Further research is required to develop the catalyst properties and performance to produce radicals.

14.
Int J Biol Macromol ; 253(Pt 8): 127510, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865363

RESUMO

Facing the increasing electromagnetic interference (EMI) pollution in the living environment, it is a new trend to explore an efficient EMI shielding material with facile fabrication and a wide range of application scenarios. A hydrophobic composite paper composed of silver nanowires (AgNWs) and kapok microfibers cellulose (MFC) was modified by methyl trimethoxy silane (MTMS) through a simple method. As a result, the composite paper has a good EMI shielding effectiveness (EMI SE) of 61.7 dB with electrical conductivity of 695.41 S/cm. The modification of MTMS improved the thermal stability performance of composite paper, which also increased its water contact angle to 113°. The free silver ions (Ag+) released from AgNWs can kill surrounding microbial bacteria, endowing the composite paper with good antibacterial property. Water resistance and antibacterial property enable MTMS/AgNWs/MFC composite paper to cope with complex application environments.


Assuntos
Nanofios , Prata/farmacologia , Antibacterianos/farmacologia , Condutividade Elétrica , Metilcelulose , Água
15.
Opt Lett ; 48(19): 5029-5032, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773377

RESUMO

Potent usage of the multi-scale light field information for salient object detection (SOD) is the essential requirement of three-dimensional (3D) SOD. On this basis, a light field 3D-SOD scheme is proposed that employs the pixel mapping algorithm to achieve a more distinct representation of spatial and angular information in the four-dimensional (4D) light field, collaboratively mining the global saliency cues via the co-salient object detection (CoSOD) network. Compared with the previous method, our scheme filters out most of the noise by thoroughly leveraging the global dependence of the 4D light field, offering significant enhancements in saliency extraction performance and efficiency. Additionally, the 3D reconstruction results demonstrate the integral retention of the spatial and angular information of the original light field.

16.
Nat Rev Chem ; 7(11): 800-812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749285

RESUMO

Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.

17.
Gels ; 9(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37623102

RESUMO

Stimulus-responsive hydrogels have been widely used in the field of drug delivery because of their three-dimensional pore size and the ability to change the drug release rate with the change in external environment. In this paper, the temperature-sensitive monomer 2-methyl-2-acrylate-2-(2-methoxyethoxy-ethyl) ethyl ester (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA) as well as the pH-sensitive monomer N,N-Diethylaminoethyl methacrylate (DEAEMA) were used to make the gel with temperature and pH response. Four kinds of physicochemical double-crosslinked amphiphilic co-network gels with different polymerization degrees were prepared by the one-pot method using the stereocomplex between polylactic acid as physical crosslinking and click chemistry as chemical crosslinking. By testing morphology, swelling, thermal stability and mechanical properties, the properties of the four hydrogels were compared. Finally, the drug release rate of the four gels was tested by UV-Vis spectrophotometer. It was found that the synthetic hydrogels had a good drug release rate and targeting, and had great application prospect in drug delivery.

18.
Org Lett ; 25(34): 6401-6406, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603790

RESUMO

A convenient and efficient trans-stereoselective and ß-regioselective hydroboration of propargyl alcohols was achieved simply with LiOtBu as the base and (Bpin)2 as the boron reagent in dimethyl sulfoxide at room temperature. Both terminal and internal propargyl alcohols with diverse structures and functional groups underwent the transformation smoothly to produce ß-Bpin-substituted (E)-allylic alcohols, of which the synthetic potentials were demonstrated by the downstream conversions of boronate, alkenyl, and hydroxyl groups.

19.
Gels ; 9(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37504437

RESUMO

Medical titanium alloy Ti-6Al-4V (TC4) has been widely used in the medical field, especially in human tissue repair. However, TC4 has some shortcomings, which may cause problems with biocompatibility and mechanical compatibility in direct contact with the human body. To solve this problem, physical gels are formed on the surface of TC4, and the storage modulus of the formed physical gel matches that of the human soft tissue. 2-bromoisobutyryl bromide (BIBB) and dopamine (DA) were used to form initiators on the surface of hydroxylated medical titanium alloy. Different initiators were formed by changing the ratio of BIBB and DA, and the optimal one was selected for subsequent reactions. Under the action of the catalyst, L-lactide and D-lactide were ring-opened polymerized with hydroxyethyl methacrylate (HEMA), respectively, to form macromolecular monomers HEMA-PLLA29 and HEMA-PDLA29 with a polymerization degree of 29. The two macromolecular monomers were stereo-complexed by ultrasound to form HEMA-stereocomplex polylactic acid (HEMA-scPLA29). Based on two monomers, 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and oligo (ethylene oxide) methacrylate (OEGMA), and the physical crosslinking agent HEMA-scPLA29, physical gels are formed on the surface of TC4 attached to the initiator via Atom Transfer Radical Addition Reaction (ATRP) technology. The hydrogels on the surface of titanium alloy were characterized and analyzed by a series of instruments. The results showed that the storage modulus of physical glue was within the range of the energy storage modulus of human soft tissue, which was conducive to improving the mechanical compatibility of titanium alloy and human soft tissue.

20.
Nat Commun ; 14(1): 2614, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147300

RESUMO

Producing afterglow room temperature phosphorescence (RTP) from natural sources is an attractive approach to sustainable RTP materials. However, converting natural resources to RTP materials often requires toxic reagents or complex processing. Here we report that natural wood may be converted into a viable RTP material by treating with magnesium chloride. Specifically, immersing natural wood into an aqueous MgCl2 solution at room temperature produces so-called C-wood containing chloride anions that act to promote spin orbit coupling (SOC) and increase the RTP lifetime. Produced in this manner, C-wood exhibits an intense RTP emission with a lifetime of ~ 297 ms (vs. the ca. 17.5 ms seen for natural wood). As a demonstration of potential utility, an afterglow wood sculpture is prepared in situ by simply spraying the original sculpture with a MgCl2 solution. C-wood was also mixed with polypropylene (PP) to generate printable afterglow fibers suitable for the fabrication of luminescent plastics via 3D printing. We anticipate that the present study will facilitate the development of sustainable RTP materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA