Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502511

RESUMO

Drought stress has an extensive impact on regulating various physiological, metabolic, and molecular responses. In the present study, the Pinus tabuliformis transcriptome was studied to evaluate the drought-responsive genes using RNA- Sequencing approache. The results depicted that photosynthetic rate and H2O conductance started to decline under drought but recovered 24 h after re-watering; however, the intercellular CO2 concentration (Ci) increased with the onset of drought. We identified 84 drought-responsive transcription factors, 62 protein kinases, 17 transcriptional regulators, and 10 network hub genes. Additionally, we observed the expression patterns of several important gene families, including 2192 genes positively expressed in all 48 samples, and 40 genes were commonly co-expressed in all drought and recovery stages compared with the control samples. The drought-responsive transcriptome was conserved mainly between P. tabuliformis and A. thaliana, as 70% (6163) genes had a homologous in arabidopsis, out of which 52% homologous (3178 genes corresponding to 2086 genes in Arabidopsis) were also drought response genes in arabidopsis. The collaborative network exhibited 10 core hub genes integrating with ABA-dependent and independent pathways closely conserved with the ABA signaling pathway in the transcription factors module. PtNCED3 from the ABA family genes had shown significantly different expression patterns under control, mild, prolonged drought, and recovery stages. We found the expression pattern was considerably increased with the prolonged drought condition. PtNCED3 highly expressed in all drought-tested samples; more interestingly, expression pattern was higher under mild and prolonged drought. PtNCED3 is reported as one of the important regulating enzymes in ABA synthesis. The continuous accumulation of ABA in leaves increased resistance against drought was due to accumulation of PtNCED3 under drought stress in the pine needles.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Pinus/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Secas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Folhas de Planta/metabolismo , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Transcriptoma/genética
2.
BMC Genomics ; 21(1): 504, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698817

RESUMO

BACKGROUND: Seasonal flowering time is an ecologically and economically important trait in temperate trees. Previous studies have shown that temperature in many tree species plays a pivotal role in regulating flowering time. However, genetic control of flowering time is not synchronised in different individual trees under comparable temperature conditions, the underlying molecular mechanism is mainly to be investigated. RESULTS: In the present study, we analysed the transcript abundance in male cones and needles from six early pollen-shedding trees (EPs) and six neighbouring late pollen-shedding trees (LPs) in Pinus tabuliformis at three consecutive time points in early spring. We found that the EPs and LPs had distinct preferred transcriptional modules in their male cones and, interestingly, the expression pattern was also consistently maintained in needles even during the winter dormancy period. Additionally, the preferred pattern in EPs was also adopted by other fast-growing tissues, such as elongating new shoots. Enhancement of nucleic acid synthesis and stress resistance pathways under cold conditions can facilitate rapid growth and maintain higher transcriptional activity. CONCLUSIONS: During the cold winter and early spring seasons, the EPs were more sensitive to relatively warmer temperatures and showed higher transcriptomic activity than the LPs, indicating that EPs required less heat accumulation for pollen shedding than LPs. These results provided a transcriptomic-wide understanding of the temporal regulation of pollen shedding in pines.


Assuntos
Pinus , Perfilação da Expressão Gênica , Masculino , Pinus/genética , Pólen/genética , Estações do Ano , Árvores
3.
Plant Physiol ; 182(1): 658-668, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659126

RESUMO

Gibberellin (GA) is known to play an important role in low red/far-red (R:FR) light ratio-mediated hypocotyl and petiole elongation in Arabidopsis (Arabidopsis thaliana). However, the regulatory relationship between low R:FR and GAs remains unclear, especially in gymnosperms. To increase our understanding of the molecular basis of low R:FR-mediated shoot elongation in pines and to determine whether there is an association between low R:FR and GAs action, we explored the morphological and transcriptomic changes triggered by low R:FR, GAs, and paclobutrazol (PAC), a GAs biosynthesis inhibitor, in Pinus tabuliformis seedlings. Transcriptome profiles revealed that low R:FR conditions and GAs have a common set of transcriptional targets in P. tabuliformis We provide evidence that the effect of low R:FR on shoot elongation in P. tabuliformis is at least partially modulated by GAs accumulation, which can be largely attenuated by PAC. GAs are also involved in the cross talk between different phytohormones in the low R:FR response. A GA biosynthesis gene, encoding ent-kaurenoic acid oxidase (KAO), was strongly stimulated by low R:FR without being affected by GAs feedback regulation or the photoperiod. We show that GA signaling is required for low R:FR-induced shoot elongation in P tabuliformis seedlings, and that there are different regulatory targets for low R:FR-mediated GA biosynthesis between conifers and angiosperms.


Assuntos
Giberelinas/metabolismo , Luz , Pinus/metabolismo , Plântula/metabolismo , Pinus/efeitos da radiação , Plântula/efeitos da radiação , Transdução de Sinais/efeitos da radiação
4.
Tree Physiol ; 39(7): 1173-1186, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31073594

RESUMO

It has long been known that the pollen shedding time in pine trees is correlated with temperature, but the molecular basis for this has remained largely unknown. To better understand the mechanisms driving temperature response and to identify the hub regulators of pollen shedding time regulation in Pinus tabuliformis Carr., we identified a set of temperature-sensitive genes by carrying out a comparative transcriptome analysis using six early pollen shedding trees (EPs) and six late pollen shedding trees (LPs) during mid-winter and at three consecutive time points in early spring. We carried out a weighted gene co-expression network analysis and constructed a transcription factor (TF) collaborative network, merging the common but differentially expressed TFs of the EPs and LPs into a joint network. We found five hub genes in the core TF module whose expression was rapidly induced by low temperatures. The transcriptional activity of this TF module was strongly associated with pollen shedding time, and likely to produce the fine balance between cold hardiness and growth activity in early spring. We confirmed the key role of temperature in regulating flowering time and identified a transcription factor module associated with pollen shedding time in P. tabuliformis. This suggests that repression of growth activity by repressors is the main mechanism balancing growth and cold hardiness in pine trees in early spring. Our results provide new insights into the molecular mechanisms regulating seasonal flowering time in pines.


Assuntos
Pinus , Fatores de Transcrição , Pólen , Temperatura , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA