Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 4262, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802387

RESUMO

Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.


Assuntos
Fixação de Nitrogênio , Filogenia , Nódulos Radiculares de Plantas , Simbiose , Simbiose/genética , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Evolução Molecular , Evolução Biológica , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/microbiologia
3.
New Phytol ; 241(4): 1851-1865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38229185

RESUMO

The macroevolutionary processes that have shaped biodiversity across the temperate realm remain poorly understood and may have resulted from evolutionary dynamics related to diversification rates, dispersal rates, and colonization times, closely coupled with Cenozoic climate change. We integrated phylogenomic, environmental ordination, and macroevolutionary analyses for the cosmopolitan angiosperm family Rhamnaceae to disentangle the evolutionary processes that have contributed to high species diversity within and across temperate biomes. Our results show independent colonization of environmentally similar but geographically separated temperate regions mainly during the Oligocene, consistent with the global expansion of temperate biomes. High global, regional, and local temperate diversity was the result of high in situ diversification rates, rather than high immigration rates or accumulation time, except for Southern China, which was colonized much earlier than the other regions. The relatively common lineage dispersals out of temperate hotspots highlight strong source-sink dynamics across the cosmopolitan distribution of Rhamnaceae. The proliferation of temperate environments since the Oligocene may have provided the ecological opportunity for rapid in situ diversification of Rhamnaceae across the temperate realm. Our study illustrates the importance of high in situ diversification rates for the establishment of modern temperate biomes and biodiversity hotspots across spatial scales.


Assuntos
Evolução Biológica , Rhamnaceae , Ecossistema , Filogenia , Biodiversidade , Especiação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA