Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Int J Biol Macromol ; 268(Pt 1): 131857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670187

RESUMO

The utilization of xylanase in juice clarification is contingent upon its stability within acidic environments. We generated a mutant xynA-1 by substituting the N-terminal segment of the recombinant xylanase xynA to investigate the correlation between the N-terminal region of xylanase and its acid stability. The enzymatic activity of xynA-1 was found to be superior under acidic conditions (pH 5.0). It exhibited enhanced acid stability, surpassing the residual enzyme activity values of xynA at pH 4.0 (53.07 %), pH 4.5 (69.8 %), and pH 5.0 (82.4 %), with values of 60.16 %, 77.74 %, and 87.3 %, respectively. Additionally, the catalytic efficiency of xynA was concurrently improved. Through molecular dynamics simulation, we observed that N-terminal shortening induced a reduction in motility across most regions of the protein structure while enhancing its stability, particularly Lys131-Phe146 and Leu176-Gly206. Furthermore, the application of treated xynA-1 in the process of apple juice clarification led to a significant increase in clarity within a short duration of 20 min at 35 °C while ensuring the quality of the apple juice. This study not only enhances the understanding of the N-terminal region of xylanase but also establishes a theoretical basis for augmenting xylanase resources employed in fruit juice clarification.


Assuntos
Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Sucos de Frutas e Vegetais , Malus , Proteínas Recombinantes , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Concentração de Íons de Hidrogênio , Malus/química , Malus/enzimologia , Simulação de Dinâmica Molecular
2.
Front Microbiol ; 15: 1361335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646623

RESUMO

As an efficient degradation strain, Sphingobium baderi SC-1 can breakdown 3-phenoxybenzoic acid (3-PBA) with high proficiency. To investigate the internal factors that regulate this process, we conducted whole-genome sequencing and successfully identified the pivotal 3-PBA-degrading gene sca (1,230 bp). After sca was expressed in engineered bacteria, a remarkable degradation efficiency was observed, as 20 mg/L 3-PBA was almost completely decomposed within 24 h. The phenol was formed as one of the degradation products. Notably, in addition to their ability to degrade 3-PBA, the resting cells proficiently degraded 4'-HO-3-PBA and 3'-HO-4-PBA. In conclusion, we successfully identified and validated sca as the pivotal enzyme responsible for the efficient degradation of 3-PBA from Sphingomonas baderi, providing a crucial theoretical foundation for further explorations on the degradation potential of SC-1.

3.
Food Res Int ; 184: 114272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609249

RESUMO

Sichuan bacon represents the most prevalent dry-cured meat product across Southwest China, but it is vulnerable to fungal spoilage. In the present study, a total of 47 Sichuan bacons were obtained from different regions of the Sichuan Province and analyzed for the presence of ochratoxin A (OTA), yielding a positive rate of 23.4 % (11/47). All the observed OTA concentrations exceeded the maximum admissible dose in meat products (1 µg/kg) established by some EU countries, with the highest OTA concentration being 250.75 µg/kg, which raises a food safety concern and reveals the need for a standardized scientific processing protocol. Then, an OTA-producing fungus named 21G2-1A was isolated from positive samples and found to be Aspergillus westerdijkiae. Further characterization suggested a positive correlation between fungal growth and OTA production. The optimal temperature for the former was 25 °C, while it was 20 °C for the latter. Although the A. westerdijkiae strain 21G2-1A demonstrated greater mycelium growth in the presence of NaCl, OTA production was significantly dismissed when the salinity was greater than 5 %. Four lactic acid bacteria (LAB) were screened out as antagonists against the ochratoxigenic fungus. In vitro evaluation of the antagonists revealed that live cells inhibited fungal growth, and adsorption also contributed to OTA removal at different levels. This study sheds some light on OTA control in Sichuan bacon through a biological approach.


Assuntos
Ocratoxinas , Carne de Porco , Adsorção , Aspergillus
4.
Artigo em Inglês | MEDLINE | ID: mdl-38683273

RESUMO

Phthalate acid esters (PAEs) and their metabolites, such as di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP), are known to cause male reproductive damage. Lactiplantibacillus plantarum RS20D has demonstrated the ability to remove both DBP and MBP in vitro, suggesting its potential as a detoxifying agent against these compounds. This study aimed to investigate the protective effects of RS20D on DBP or MBP-induced male reproductive toxicity in adolescent rats. Oral administration of RS20D significantly mitigated the histological damage to the testes caused by MBP or DBP, restored sperm concentration, morphological abnormalities, and the proliferation index in MBP-exposed rats, and partially reversed spermatogenic damage in DBP-exposed rats. Furthermore, RS20D restored serum levels of estradiol (E2) and testosterone, and superoxide dismutase (SOD) activity in DBP-exposed rats, significantly increased testosterone levels in MBP-exposed rats, and restored copper (Cu) concentrations in the testes after exposure to DBP or MBP. Additionally, RS20D effectively modulated the intestinal microbiota in DBP-exposed rats and partially ameliorated dysbiosis induced by MBP, which may be associated with the alleviation of reproductive toxic effects induced by DBP or MBP. In conclusion, this study demonstrates that RS20D administration can alleviate male reproductive toxicity and gut dysbacteriosis induced by DBP or MBP exposure, providing a dietary strategy for the bioremediation of PAEs and their metabolites.

5.
Arch Microbiol ; 206(2): 59, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191944

RESUMO

Sichuan Baoning vinegar, a typical representative of Sichuan bran vinegar, is a famous traditional fermented food made from cereals in China. At present, there are few studies on microbial characterization of culturable microorganisms in solid-state fermentation of Sichuan bran vinegar. To comprehensively understand the diversity of lactic acid bacteria, acetic acid bacteria and yeasts, which play an important role in the fermentation of Sichuan bran vinegar, traditional culture-dependent methods combined with morphological, biochemical, and molecular identification techniques were employed to screen and identify these isolates. A total of 34 lactic acid bacteria isolates, 39 acetic acid bacteria isolates, and 48 yeast isolates were obtained. Lactic acid bacteria were dominated by Enterococcus durans, Leuconostoc citreum, Lactococcus lactis, and Lactiplantibacillus plantarum, respectively. Latilactobacillus sakei was the first discovery in cereal vinegar. Acetic acid bacteria were mainly Acetobacter pomorum and A. pasteurianus. The dominant yeast isolates were Saccharomyces cerevisiae, in addition to four non-Saccharomyces yeasts. DNA fingerprinting revealed that isolates belonging to the same species exhibited intraspecific diversity, and there were differences between phenotypic and genotypic classification results. This study further enriches studies on cereal vinegar and lays a foundation for the development of vinegar starters.


Assuntos
Ácido Acético , Lactobacillales , Lactobacillales/genética , Saccharomyces cerevisiae , Bactérias/genética , China , Grão Comestível
6.
Int J Biol Macromol ; 257(Pt 1): 128649, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065452

RESUMO

Okra polysaccharides exhibits a range of biological activities. To date, its processing using microbial fermentation has not been explored. This study investigated the fermentation of okra juice with various lactic acid bacteria, followed by the extraction and characterization of crude polysaccharides (termed OPS-F), in contrast to their non-fermented counterpart (OPS). Changes in physicochemical properties, antioxidant activity and immunomodulatory ability were noted. The results demonstrated that OPS-F had a 7.42-12.53 % increase in total polysaccharides content compared to OPS. However, high-performance size-exclusion chromatography indicated a reduction in the molecular weight of OPS-F (7.9-9.5 × 105 Da) relative to OPS (1.66 × 106 Da). Compared to OPS, OPS-F had reduced levels of mannose, glucose, glucuronic acid and arabinose, but increased rhamnose, galacturonic acid and galactose, exhibiting enhanced solubility and lower apparent viscosity. Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis showed minimal changes in polysaccharide structure post-fermentation. Moreover, despite a decrease in antioxidant activity post-fermentation, OPS-F exhibited superior immunomodulatory potential. In conclusion, fermenting okra juice with lactic acid bacteria alters the physicochemical properties of crude polysaccharides and enhances their immunomodulatory activity, offering a promising approach for developing new functional food resources.


Assuntos
Abelmoschus , Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , Abelmoschus/química , Fermentação , Polissacarídeos/farmacologia , Polissacarídeos/química , Peso Molecular
7.
J Food Sci ; 89(1): 566-580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126118

RESUMO

Histamine (HIS) is primarily formed from decarboxylated histidine by certain bacteria with histidine decarboxylase (hdc) activity and is the most toxic biogenic amine. Hdc, which is encoded by the hdc gene, serves as a key enzyme that controls HIS production in bacteria. In this paper, we characterized the changes in microbial and biogenic amines content of traditional Sichuan-style sausage before and after storage and demonstrated that Enterobacteriaceae play an important role in the formation of HIS. To screen for Enterobacteriaceae with high levels of HIS production, we isolated strain RH3 which has a HIS production of 2.27 mg/mL from sausages stored at 37°C for 180 days, using selective media and high-performance liquid chromatography. The strain RH3 can produce a high level of HIS after 28 h of fermentation with a significant hysteresis. Analysis of the physicochemical factors revealed that RH3 still retained its ability to partially produce HIS in extreme environments with pH 3.5 and 10.0. In addition, RH3 exhibited excellent salt tolerance (6.0% NaCl and 1.0% NaNO2 ). Subsequently, RH3 was confirmed as Enterobacter hormaechei with hdc gene deletion by PCR, western blot, and whole-genome sequencing analysis. Furthermore, RH3 exhibited pathogenicity rate of 75.60% toward the organism, indicating that it was not a food-grade safe strain, and demonstrated a high level of conservation in intraspecific evolution. The results of this experiment provide a new reference for studying the mechanism of HIS formation in microorganisms. PRACTICAL APPLICATION: This study provides a new direction for investigating the mechanism of histamine (HIS) formation by microorganisms and provides new insights for further controlling HIS levels in meat products. Further research can control the key enzymes that form HIS to control HIS levels in food.


Assuntos
Histamina , Produtos da Carne , Histamina/análise , Histidina Descarboxilase/genética , Produtos da Carne/análise , Deleção de Genes , Aminas Biogênicas , Enterobacteriaceae/genética , Enterobacter/genética
8.
J Environ Manage ; 351: 119935, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154221

RESUMO

Heavy metal and antibiotic-resistant bacteria from livestock feces are ecological and public health problems. However, the distribution and relationships of antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs), and virulence factors (VFs) and their transmission mechanisms remain unclear. Therefore, we investigated the resistance of Escherichia coli, the prevalence of its ARGs, HMRGs, and VFs, and their transmission mechanisms in livestock fresh feces (FF), composted feces (CF), and fertilized soil (FS). In total, 99.54% (n = 221) and 91.44% (n = 203) of E. coli were resistant to at least one antibiotic and one heavy metal, respectively. Additionally, 72.52% (n = 161) were multi-drug resistant (MDR), of which Cu-resistant E. coli accounted for 72.67% (117/161). More than 99.34% (88/89) of E. coli carried multidrug ARGs, VFs, and the Cu resistance genes cueO and cusABCRFS. The Cu resistance genes cueO and cusABCRFS were mainly located on chromosomes, and cueO and cusF were positively associated with HMRGs, ARGs, and VFs. The Cu resistance genes pcoABCDRS were located on the plasmid pLKYL-P02 flanked by ARGs in PF18C from FF group and on chromosomes flanked by HMRGs in SAXZ1-1 from FS group. These results improved our understanding of bacterial multidrug and heavy metal resistance in the environment.


Assuntos
Antibacterianos , Metais Pesados , Animais , Antibacterianos/farmacologia , Escherichia coli/genética , Esterco/microbiologia , Gado , Solo , Genes Bacterianos , Metais Pesados/farmacologia , Bactérias/genética
9.
Microorganisms ; 11(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004736

RESUMO

In order to explore the structural changes and products of histamine degradation by multicopper oxidase (MCO) in Lactiplantibacillus plantarum LPZN19, a 1500 bp MCO gene in L. plantarum LPZN19 was cloned, and the recombinant MCO was expressed in E. coli BL21 (DE3). After purification by Ni2+-NTA affinity chromatography, the obtained MCO has a molecular weight of 58 kDa, and it also has the highest enzyme activity at 50 °C and pH 3.5, with a relative enzyme activity of 100%, and it maintains 57.71% of the relative enzyme activity at 5% salt concentration. The secondary structure of MCO was determined by circular dichroism, in which the proportions of the α-helix, ß-sheet, ß-turn and random coil were 2.9%, 39.7%, 21.2% and 36.1%, respectively. The 6xj0.1.A with a credibility of 68.21% was selected as the template to predict the tertiary structure of MCO in L. plantarum LPZN19, and the results indicated that the main components of the tertiary structure of MCO were formed by the further coiling and folding of a random coil and ß-sheet. Histamine could change the spatial structure of MCO by increasing the content of the α-helix and ß-sheet. Finally, the LC-MS/MS identification results suggest that the histamine was degraded into imidazole acetaldehyde, hydrogen peroxide and ammonia.

10.
Foods ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835356

RESUMO

Traditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant microorganisms isolated from traditional dairy products in western nan. The results indicated that MFM displayed better overall quality than the milk fermented with L. brevis NZ4 (LFM) and K. marxianus SY11 (KFM), respectively. MFM exhibited good sensory quality, more organic acid types, more free amino acids and esters, and moderate acidity and ethanol concentrations. Non-targeted metabolomics showed a total of 885 metabolites annotated in the samples, representing 204 differential metabolites between MFM and LFM and 163 between MFM and KFM. MFM displayed higher levels of N-acetyl-L-glutamic acid, cysteinyl serine, glaucarubin, and other substances. The differential metabolites were mainly enriched in pathways such as glycerophospholipid metabolism, arginine biosynthesis, and beta-alanine metabolism. This study speculated that L. brevis affected K. marxianus growth via its metabolites, while the mixed fermentation of these strains significantly changed the metabolism pathway of flavor-related substances, especially glycerophospholipid metabolism. Furthermore, mixed fermentation modified the flavor and quality of fermented milk by affecting cell growth and metabolic pathways.

11.
Appl Microbiol Biotechnol ; 107(22): 6985-6998, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702791

RESUMO

The presence of cypermethrin in the environment and food poses a significant threat to human health. Lactic acid bacteria have shown promise as effective absorbents for xenobiotics and well behaved in wide range of applications. This study aimed to characterize the biosorption behavior of cypermethrin by Lactiplantibacillus plantarum RS60, focusing on cellular components, functional groups, kinetics, and isotherms. Results indicated that RS60 exopolysaccharides played a crucial role removing cypermethrin, with the cell wall and protoplast contributing 71.50% and 30.29% to the overall removal, respectively. Notably, peptidoglycans exhibited a high affinity for cypermethrin binding. The presence of various cellular surface groups including -OH, -NH, -CH3, -CH2, -CH, -P = O, and -CO was responsible for the efficient removal of pollutants. Additionally, the biosorption process demonstrated a good fit with pseudo-second-order and Langmuir-Freundlich isotherm. The biosorption of cypermethrin by L. plantarum RS60 involved complex chemical and physical interactions, as well as intraparticle diffusion and film diffusion. RS60 also effectively reduced cypermethrin residues in a fecal fermentation model, highlighting its potential in mitigating cypermethrin exposure in humans and animals. These findings provided valuable insights into the mechanisms underlying cypermethrin biosorption by lactic acid bacteria and supported the advancement of their application in environmental and health-related contexts. KEY POINTS: • Cypermethrin adsorption by L. plantarum was clarified. • Cell wall and protoplast showed cypermethrin binding ability. • L. plantarum can reduce cypermethrin in a fecal fermentation model.

12.
Front Microbiol ; 14: 1226031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520381

RESUMO

Several lactic acid bacteria (LAB) are double-edged swords in the production of Sichuan bran vinegar; on the one hand, they are important for the flavour of the vinegar, but on the other hand, they result in vinegar deterioration because of their gas-producing features and their acid resistance. These characteristics intensify the difficulty in managing the safe production of vinegar using strains such as Acetilactobacillus jinshanensis subsp. aerogenes Z-1. Therefore, it is necessary to characterize the mechanisms underlying their acid tolerance. The results of this study showed a survival rate of 77.2% for Z-1 when exposed to pH 3.0 stress for 1 h. This strain could survive for approximately 15 days in a vinegar solution with 4% or 6% total acid content, and its growth was effectively enhanced by the addition of 10 mM of arginine (Arg). Under acidic stress, the relative content of the unsaturated fatty acid C18:1 (n-11) increased, and eight amino acids accumulated in the cells. Meanwhile, based on a transcriptome analysis, the genes glnA, carA/B, arcA, murE/F/G, fabD/H/G, DnaK, uvrA, opuA/C, fliy, ecfA2, dnaA and LuxS, mainly enriched in amino acid transport and metabolism, protein folding, DNA repair, and cell wall/membrane metabolism processes, were hypothesized to be acid resistance-related genes in Z-1. This work paves the way for further clarifying the acid tolerance mechanism of Z-1 and shares applicable perspectives for vinegar brewing.

13.
J Chromatogr A ; 1705: 464210, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37451198

RESUMO

The residue of carbaryl in food is a threat to human health. In this study, activated soybean shell biochar (A-SBC) was used as a carrier, methacrylic acid (MAA) was used as a functional monomer, and carbaryl was used as a template molecule to synthesize the activated biochar surface molecularly imprinted polymer (A-SBC@MIP). The synthesized A-SBC@MIP was characterized by SEM, FT-IR, XRD and XPS techniques, and then applied as adsorbent for carbaryl removal. The adsorption capacity of A-SBC@MIP for carbaryl was 8.6 mg‧g-1 and the imprinting factor was 1.49 at the optimum ionic strength and pH. The kinetic and isothermal data indicated that it had fast mass transfer rate and high binding capacity(Qmax=47.9 mg‧g-1). A-SBC@MIP showed good regenerative properties and the adsorption of carbaryl was excellent in its structural analogues. A solid-phase extraction (SPE) column composed of A-SBC@MIP was developed for the detection of rice and corn under optimized conditions, with recoveries of 93-101% for the spiked carbaryl. The limit of detection (LOD) of the method was 3.6 µg‧kg-1 with good linearity (R2=0.994) in the range of 0.01-5.00 mg‧L-1. The results show that the developed MIPs-SPE can enrich carbaryl from food samples as a specific and cost-effective method.


Assuntos
Impressão Molecular , Oryza , Humanos , Carbaril , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Zea mays , Polímeros/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Extração em Fase Sólida/métodos
14.
Int J Food Microbiol ; 404: 110319, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37473468

RESUMO

Salmonella has presented increasingly alarming rates of antimicrobial resistance believed to be a result of a high prevalence of integrons. It is speculated that disinfectant-resistant isolates are due to the expression of qacEΔ1, an efflux pump located in the 3' conserved sequence (3'CS) of class 1 integrons. With this concern, we tested the antibiotic and disinfectant resistance of 581 Salmonella strains collected from different sources, and characterized their integron structures. Gene expression and induction experiments were also performed. Results showed that Salmonella have high resistance to antimicrobials, especially to sulfonamides (SAs, 78.83 %), tetracyclines (TCs, 75.04 %) and benzalkonium chloride (BC, 87.26 %). The multi-drug resistance (MDR) frequency reached up to 63.17 %, and the prevalence of intI1 was 45.78 %. Molecular characterization of class 1 integrons exhibited nine different gene cassette arrays, of these, dfrA12-orf-aadA2 (n = 75), EstX (n = 25) and aadA2 (n = 14) were the most frequent. Importantly, 74.06 % of intI1-positive isolates were carrying qacEΔ1-sul1 genes in the 3'CS. This study also demonstrated that phenotypic resistance to both antibiotics and disinfectants was significantly correlated with the emergence of intI1 (p < 0.05). 91.37 % of qacEΔ1-sul1 positive Salmonella were found with disinfectant resistance. Additionally, expression of qacEΔ1 gene in Escherichia coli confirmed qacEΔ1 is predominantly involved in conferring disinfectant resistance. Disinfectant induction experiments further implicated qacEΔ1 in disinfectant resistance. RT-qPCR revealed a disinfectant-mediated increase in the relative expression of antibiotic-resistant genes (ARGs), aadA2 and dfrA12 on the integron, and efflux pump genes (mdtH and acrD) indicating that disinfectant could trigger co or cross-resistance. Therefore, our study confirmed that using disinfectant could provide selection pressure for strains with acquired resistance to antibiotics, providing new insights into the public health impact of Salmonella and guide continued efforts in antimicrobial stewardship and prevention of antibiotic resistance.


Assuntos
Desinfetantes , Integrons , Integrons/genética , Antibacterianos/farmacologia , Desinfetantes/farmacologia , Salmonella , Escherichia coli , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
15.
Carbohydr Polym ; 314: 120938, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173034

RESUMO

In this study, we synthesized nitrogen-doped carbon dots (N-CDs) with remarkable photodynamic antibacterial properties by a hydrothermal method. The composite film was prepared by solvent casting method, compounding N-CDs with chitosan (CS). The morphology and structure of the films were analyzed by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) techniques. The films' mechanical, barrier, thermal stability, and antibacterial properties were analyzed. A preservation test of the films was studied on the samples of pork, volatile base nitrogen (TVB-N), total viable count (TVC), and pH were determined. Besides, the effect of film on the preservation of blueberries was observed. The study found that, compared with the CS film, the CS/N-CDs composite film is strong and flexible, with good UV light barrier performance. The prepared CS/7 % N-CDs composites showed high photodynamic antibacterial rates of 91.2 % and 99.9 % for E. coli and S. aureus, respectively. In the preservation of pork, it was found that its pH, TVB-N, and TVC indicators were significantly lower. The extent of mold contamination and anthocyanin loss was less in the CS/3 % N-CDs composite film-coated group, which could greatly extend the shelf life of food.


Assuntos
Quitosana , Quitosana/química , Embalagem de Alimentos/métodos , Escherichia coli , Staphylococcus aureus , Carbono/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Conservação de Alimentos
16.
Exp Biol Med (Maywood) ; 248(7): 624-632, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37208914

RESUMO

With advances in pediatric and obstetric surgery, pediatric patients are subject to complex procedures under general anesthesia. The effects of anesthetic exposure on the developing brain may be confounded by several factors including pre-existing disorders and surgery-induced stress. Ketamine, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is routinely used as a pediatric general anesthetic. However, controversy remains about whether ketamine exposure may be neuroprotective or induce neuronal degeneration in the developing brain. Here, we report the effects of ketamine exposure on the neonatal nonhuman primate brain under surgical stress. Eight neonatal rhesus monkeys (postnatal days 5-7) were randomly assigned to each of two groups: Group A (n = 4) received 2 mg/kg ketamine via intravenous bolus prior to surgery and a 0.5 mg/kg/h ketamine infusion during surgery in the presence of a standardized pediatric anesthetic regimen; Group B (n = 4) received volumes of normal saline equivalent to those of ketamine given to Group A animals prior to and during surgery, also in the presence of a standardized pediatric anesthetic regimen. Under anesthesia, the surgery consisted of a thoracotomy followed by closing the pleural space and tissue in layers using standard surgical techniques. Vital signs were monitored to be within normal ranges throughout anesthesia. Elevated levels of cytokines interleukin (IL)-8, IL-15, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein (MIP)-1ß at 6 and 24 h after surgery were detected in ketamine-exposed animals. Fluoro-Jade C staining revealed significantly higher neuronal degeneration in the frontal cortex of ketamine-exposed animals, compared with control animals. Intravenous ketamine administration prior to and throughout surgery in a clinically relevant neonatal primate model appears to elevate cytokine levels and increase neuronal degeneration. Consistent with previous data on the effects of ketamine on the developing brain, the results from the current randomized controlled study in neonatal monkeys undergoing simulated surgery show that ketamine does not provide neuroprotective or anti-inflammatory effects.


Assuntos
Anestésicos , Ketamina , Animais , Anestésicos/farmacologia , Animais Recém-Nascidos , Encéfalo/metabolismo , Ketamina/farmacologia , Primatas
17.
Exp Biol Med (Maywood) ; 248(7): 633-640, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37208932

RESUMO

Neurotoxicity assessments are generally performed using laboratory animals. However, as in vitro neurotoxicity models are continuously refined to reach adequate predicative concordance with in vivo responses, they are increasingly used for some endpoints of neurotoxicity. In this study, gestational day 80 fetal rhesus monkey brain tissue was obtained for neural stem cells (NSCs) isolation. Cells from the entire hippocampus were harvested, mechanically dissociated, and cultured for proliferation and differentiation. Immunocytochemical staining and biological assays demonstrated that the harvested hippocampal cells exhibited typical NSC phenotypes in vitro: (1) cells proliferated vigorously and expressed NSC markers nestin and sex-determining region Y-box 2 (SOX2) and (2) cells differentiated into neurons, astrocytes, and oligodendrocytes, as confirmed by positive staining with class III ß-tubulin, glial fibrillary acidic protein, and galactocerebroside, respectively. The NSC produced detectable responses following neurotoxicant exposures (e.g. trimethyltin and 3-nitropropionic acid). Our results indicated that non-human primate NSCs may be a practical tool to study the biology of neural cells and to evaluate the neurotoxicity of chemicals in vitro, thereby providing data that are translatable to humans and may also reduce the number of animals needed for developmental neurotoxicological studies.


Assuntos
Células-Tronco Neurais , Animais , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Encéfalo
18.
Chemosphere ; 331: 138797, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37116725

RESUMO

In this study, an energy-efficient divided bipolar electrolysis system was developed for water softening, where two PTFE membranes were used as the separating materials and a bipolar electrode was employed to enhance the H2O-splitting reactions. As compared with other two operation modes, the optimum calcium harness removal efficiencies of 85% and 57% could be reached in the induction cathode effluent and terminal effluent, respectively, at 8 mA cm-2 in the mode A. Increasing the current density from 5 to 20 mA cm-2 evidently promoted the removal of calcium hardness from 33% to 65% in the terminal effluent and the CaCO3 precipitation rate from 743 to 1462 gCaCO3 h-1 m-2 with the increased energy consumption from 0.53 to 2.2 kWh kg-1CaCO3. The optimized Ca2+/HCO3- molar ratio was 1:1.2 for the calcium hardness removal. In addition, increasing the flow rate into each cathode chamber from 10 to 40 mL min-1 gradually decreased from 67% to 35%. The calcium hardness was mainly removed in the forms of vaterite and calcite in the alkaline effluents and was marginally precipitated as aragonite and calcite on the cathodes surface. Generally, present energy-efficient electrochemical water softening system showed great potential for application in industrial processes.


Assuntos
Cálcio , Eletrólise , Dureza , Carbonato de Cálcio , Cálcio da Dieta , Eletrodos
19.
Front Microbiol ; 14: 1135912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876092

RESUMO

Cereal vinegar is usually produced through solid-state fermentation, and the microbial community plays an important role in fermentation. In this study, the composition and function of Sichuan Baoning vinegar microbiota at different fermentation depths were evaluated by high-throughput sequencing combined with PICRUSt and FUNGuild analysis, and variations in volatile flavor compounds were also determined. The results revealed that no significant differences (p > 0.05) were found in both total acid content and pH of vinegar Pei collected on the same day with different depths. There were significant differences between the bacterial community of samples from the same day with different depths at both phylum and genus levels (p < 0.05), however, no obvious difference (p > 0.05) was observed in the fungal community. PICRUSt analysis indicated that fermentation depth affected the function of microbiota, meanwhile, FUNGuild analysis showed that there were variations in the abundance of trophic mode. Additionally, differences in volatile flavor compounds were observed in samples from the same day with different depths, and significant correlations between microbial community and volatile flavor compounds were observed. The present study provides insights into the composition and function of microbiota at different depths in cereal vinegar fermentation and quality control of vinegar products.

20.
PeerJ ; 11: e14988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908810

RESUMO

Rhizosphere microorganisms play a key role in affecting plant quality and productivity through its interaction with plant root system. To figure out the bottleneck of the decline of yield and quality in the traditional Chinese medicinal herbs Glehnia littoralis they now encounter, it is important to study the dynamics of rhizosphere microbiota during the cultivation of G. littoralis. In the present study, the composition, diversity and function of rhizosphere microbes at different development stages of G. littoralis, as well as the correlation between rhizosphere microbes and environmental factors were systematically studied by high-throughput sequencing. There were significant differences between the rhizosphere microbes at early and middle-late development stages. More beneficial bacteria, such as Proteobacteria, and more symbiotic and saprophytic fungi were observed at the middle-late development stage of G. littoralis, while beneficial bacteria such as Actinobacteria and polytrophic transitional fungi were abundant at all development stages. The results of redundancy analysis show that eight environmental factors drive the changes of microflora at different development stages. pH, soil organic matter (SOM) and available phosphorus (AP) had important positive effects on the bacterial and fungal communities at the early development stage; saccharase (SC) and nitrate nitrogen (NN) showed significant positive effects on the bacterial and fungal communities at the middle and late stages; while urease (UE), available potassium (AK), and alkaline phosphatase (AKP) have different effects on bacterial and fungal communities at different development stages. Random forest analysis identified 47 bacterial markers and 22 fungal markers that could be used to distinguish G. littoralis at different development stages. Network analysis showed that the rhizosphere microbes formed a complex mutualistic symbiosis network, which is beneficial to the growth and development of G. littoralis. These results suggest that host development stage and environmental factors have profound influence on the composition, diversity, community structure and function of plant rhizosphere microorganisms. This study provides a reference for optimizing the cultivation of G. littoralis.


Assuntos
Microbiota , Plantas Medicinais , Rizosfera , Microbiologia do Solo , Bactérias , Microbiota/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA