Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
ACS Appl Mater Interfaces ; 16(19): 24572-24579, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690767

RESUMO

Infrared (IR) solar cells, capable of converting low-energy IR photons to electron-hole pairs, are promising optoelectronic devices by broadening the utilization range of the solar spectrum to the short-wavelength IR region. The emerging PbS colloidal quantum dot (QD) IR solar cells attract much attention due to their tunable band gaps in the IR region, potential multiple exciton generation, and facile solution processing. In PbS QD solar cells, ZnO is commonly utilized as an electron transport layer (ETL) to establish a depleted heterostructure with a QD photoactive layer. However, band gap shrinkage of large PbS QDs makes it necessary to tailor the behaviors of the ZnO ETL for efficient carrier extraction in the devices. Herein, the characteristics of ZnO ETL are efficiently and flexibly tailored to match the QD layer by handily adjusting the postannealing process of ZnO ETL. With a suitable temperature, the well-matched energy level alignment and suppressed trap states are simultaneously achieved in the ZnO ETL, effectively reducing the nonradiative recombination and accelerating the electron injection from the QD layer to ETL. As a consequence, a high-performance PbS QD photovoltaic device with power conversion efficiencies (PCEs) of 10.09% and 1.37% is obtained under AM 1.5 and 1100 nm filtered solar illumination, demonstrating a simple and effective approach for achieving high-performance IR photoelectric devices.

2.
J Colloid Interface Sci ; 669: 126-136, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38713952

RESUMO

The shuttle effect and sluggish redox kinetics of polysulfides have hindered the development of lithium-sulfur batteries (LSBs) as premier energy storage devices. To address these issues, a high-entropy metal phosphide (NiCoMnFeCrP) was synthesized using the sol-gel method. NiCoMnFeCrP, with its rich metal species, exhibits strong synergistic effects and provides numerous catalytic active sites for the conversion of polysulfides. These active sites, possessing significant polarity, can bond with polysulfides. In situ ultraviolet-visible were conducted to monitor the dynamic changes in species and concentrations of polysulfides, validating the ability of NiCoMnFeCrP to facilitate the conversion of polysulfides. The batteries with the NiCoMnFeCrP catalyst as functional separators exhibited minimal capacity decay rates of 0.04 % and 0.23 % after 100 cycles at 0 °C and 60 °C, respectively. This indicates that the NiCoMnFeCrP catalyst possesses good thermal stability. Meanwhile, its area capacity can reach 4.78 mAh cm-2 at a high sulfur load of 4.54 mg cm-2. In conclusion, NiCoMnFeCrP achieves the objective of mitigating the shuttle effect and accelerating the kinetics of the redox reaction, thereby facilitating the commercialization of LSBs.

3.
Sci Adv ; 10(21): eadn8490, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781339

RESUMO

Glacier and permafrost shrinkage and land-use intensification threaten mountain wildlife and affect nature conservation strategies. Here, we present paleometagenomic records of terrestrial and aquatic taxa from the southeastern Tibetan Plateau covering the last 18,000 years to help understand the complex alpine ecosystem dynamics. We infer that steppe-meadow became woodland at 14 ka (cal BP) controlled by cryosphere loss, further driving a herbivore change from wild yak to deer. These findings weaken the hypothesis of top-down control by large herbivores in the terrestrial ecosystem. We find a turnover in the aquatic communities at 14 ka, transitioning from glacier-related (blue-green) algae to abundant nonglacier-preferring picocyanobacteria, macrophytes, fish, and otters. There is no evidence for substantial effects of livestock herding in either ecosystem. Using network analysis, we assess the stress-gradient hypothesis and reveal that root hemiparasitic and cushion plants are keystone taxa. With ongoing cryosphere loss, the protection of their habitats is likely to be of conservation benefit on the Tibetan Plateau.


Assuntos
Ecossistema , Sedimentos Geológicos , Metagenômica , Tibet , Animais , Metagenômica/métodos , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Herbivoria , Pergelissolo/microbiologia
4.
J Phys Chem Lett ; 15(20): 5495-5500, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38748898

RESUMO

Single-atom catalysts (SACs) have been widely studied in a variety of electrocatalysis. However, its application in the electrocatalytic nitrogen reduction reaction (NRR) field still suffers from unsatisfactory performance, due to the sluggish mass transfer and significant kinetic barriers. Herein, a novel rare-earth-lanthanum-evoked optimization strategy is proposed to boost ambient NRR over SACs. The incorporation of La with a large atomic radius tends to break the atomic long-range order and trigger the amorphization of SACs, endowing a greater density of dangling bonds that could modify affinity for reactants and adsorbates. Moreover, with unique 5d16s2 valence-electron configurations, its presence could further enrich the electron density and enhance the intrinsic activity of single-metal center via the valence orbital coupling. As expected, the La-modified catalyst presents excellent activity toward the electrochemical NRR, delivering a maximum ammonia yield rate of 33.91 µg h-1 mg-1 and a remarkable Faradaic efficiency of 53.82%.

5.
Dig Dis Sci ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594433

RESUMO

BACKGROUND: When unintentional pancreatic duct access occurs during difficult biliary cannulation, the double guidewire (DGW) or transpancreatic sphincterotomy (TPS) may be utilized. DGW can be easily switched to TPS due to the existing guidewire in the pancreatic duct. However, the efficacy of TPS after DGW, named sequential DGW-TPS technique, versus primary TPS has not been assessed. AIMS: Our aim was to compare the benefits and adverse events of sequential DGW-TPS technique and primary TPS. METHODS: We performed a comparative retrospective cohort study that enrolled a total of 117 patients with native papillae. The patients were divided into one of 2 groups according to the primary bile duct access technique (sequential DGW-TPS or primary TPS), both with pancreatic stenting. RESULTS: Between November 2017 and May 2023, a total of 84 patients were grouped into sequential DGW-TPS and 33 into primary TPS. The overall post-ERCP pancreatitis (PEP) rate was 4.3% in the entire cohort, with no statistical differences were observed between the groups in terms of PEP rates (P = 0.927), PEP severity (P = 1.000), first biliary cannulation success (P = 0.621), overall cannulation success (P = 1.000), hyperamylasemia incidence (P = 0.241), elevated amylase levels (P = 0.881), and postoperative hospital stay (P = 0.185). Furthermore, these results remained consistent in multivariable regression analysis. CONCLUSIONS: The sequential DGW-TPS technique showed a comparable safety and biliary cannulation success rate to primary TPS in difficult biliary cannulation. Given the potential long-term complications associated with TPS, DGW should be first if inadvertent pancreatic access occurs, with TPS serving as second only if DGW fails.

6.
RSC Adv ; 14(18): 12593-12599, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38638811

RESUMO

The catalytic performance of a catalyst is significantly influenced by its ability to activate hydrogen. Constructing frustrated Lewis pairs (FLPs) with the capacity for hydrogen dissociation on non-reducible supports remains a formidable challenge. Herein, we employed a straightforward method to synthesize a layered AlOOH featuring abundant OH defects suitable for constructing solid surface frustrated Lewis pair (ssFLP). The results indicated that the AlOOH-80 (synthesized at 80 °C) possessed an appropriate crystalline structure conducive to generating numerous OH defects, which facilitated the formation of ssFLP. This was further evidenced by the minimal water adsorption in the AlOOH-80, inversely correlated with the quantity of defects in the catalyst. As expected, the Pd loaded onto AlOOH (Pd/AlOOH-80) exhibited excellent catalytic activity in hydrogenation reactions, attributed to abundant defects available for constructing ssFLP. Remarkably, the Pd/AlOOH-80 catalyst, with larger-sized Pd nanoparticles, displayed notably superior activity compared to commercial Pd/Al2O3 and Pd/C, both featuring smaller-sized Pd nanoparticles. Evidently, under the influence of ssFLP, the size effect of Pd nanoparticles did not dominate, highlighting the pivotal role of ssFLP in enhancing catalytic performance. This catalyst also exhibited exceptionally high stability, indicating its potential for industrial applications.

7.
Front Microbiol ; 15: 1258208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476934

RESUMO

Synsepalum dulcificum exhibits high edible and medicinal value; however, there have been no reports on the exploration of its endophyte resources. Here, we conducted analyses encompassing plant metabolomics, microbial diversity, and the biological activities of endophytic metabolites in S. dulcificum. High-throughput sequencing identified 4,913 endophytic fungal amplicon sequence variants (ASVs) and 1,703 endophytic bacterial ASVs from the roots, stems, leaves, flowers, and fruits of S. dulcificum. Fungi were classified into 5 phyla, 24 classes, 75 orders, 170 families, and 313 genera, while bacteria belonged to 21 phyla, 47 classes, 93 orders, 145 families, and 232 genera. Furthermore, there were significant differences in the composition and content of metabolites in different tissues of S. dulcificum. Spearman's correlation analysis of the differential metabolites and endophytes revealed that the community composition of the endophytes correlated with plant-rich metabolites. The internal transcribed spacer sequences of 105 isolates were determined, and phylogenetic analyses revealed that these fungi were distributed into three phyla (Ascomycota, Basidiomycota, and Mucoromycota) and 20 genera. Moreover, 16S rDNA sequencing of 46 bacteria revealed they were distributed in 16 genera in three phyla: Actinobacteria, Proteobacteria, and Firmicutes. The antimicrobial activities (filter paper method) and antioxidant activity (DPPH and ABTS assays) of crude extracts obtained from 68 fungal and 20 bacterial strains cultured in different media were evaluated. Additionally, the α-glucosidase inhibitory activity of the fungal extracts was examined. The results showed that 88.6% of the strains exhibited antimicrobial activity, 55.7% exhibited antioxidant activity, and 85% of the fungi exhibited α-glucosidase inhibitory activity. The research suggested that the endophytes of S. dulcificum are highly diverse and have the potential to produce bioactive metabolites, providing abundant species resources for developing antibiotics, antioxidants and hypoglycemic drugs.

8.
Sci Total Environ ; 921: 171143, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387592

RESUMO

Effectively identifying persistent organic pollutants (POPs) with extensive organic chemical datasets poses a formidable challenge but is of utmost importance. Leveraging machine learning techniques can enhance this process, but previous models often demanded advanced programming skills and high-end computing resources. In this study, we harnessed the simplicity of PyCaret, a Python-based package, to construct machine-learning models for POP screening based on 2D molecular descriptors. We compared the performance of these models against a deep convolutional neural network (DCNN) model. Utilising minimal Python code, we generated several models that exhibited superior or comparable performance to the DCNN. The most outstanding performer, the Light Gradient Boosting Machine (LGBM), achieved an accuracy of 96.20 %, an AUC of 97.70 %, and an F1 score of 82.58 %. This model outshone the DCNN model. Furthermore, it excelled in identifying POPs within the REACH PBT and compiled industrial chemical lists. Our findings highlight the accessibility and simplicity of PyCaret, requiring only a few lines of code, rendering it suitable for non-computing professionals in environmental sciences. The ability of low code machine learning tools (e.g. PyCaret) to facilitate model comparison and interpretation holds promise, encouraging prompt assessment and management of chemical substances.

9.
Environ Sci Pollut Res Int ; 31(11): 17417-17425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337116

RESUMO

Wastewater treatment plants (WWTPs) are one of the most important sources and sinks for per- and polyfluoroalkyl substances (PFAS). However, limited studies have evaluated short-term temporal variability of PFAS in WWTPs, particularly for their intra-day variations. For this purpose, a time-composite sampling campaign was carried out at a WWTP influent from South China for 1 week. Five out of ten PFAS were found in the influent, i.e., perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutane sulfonic acid (PFBS), and perfluorooctanesulfonic acid (PFOS). PFOA was the most domain PFAS whereas PFOS was detected occasionally, which might be associated with the prohibition of PFOS use in China. For the first time, we observed significant intra-day fluctuations in mass fluxes for PFOS. Different from a morning peak of pharmaceuticals reported previously, PFOS mass loads fluctuated sharply at noon and night on the weekdays. Furthermore, the mass fluxes of PFOA on the weekend were significantly elevated. For the other PFAS detected, no significant diurnal variations in mass loads were identified. Correlation analysis indicated that domestic activities (e.g., home cleaning) are likely to be the major source of these perfluorocarboxylic acids especially PFOA. In addition, flow fluxes had little effects on these PFAS mass load. These results can aid in future sampling campaigns and optimizing removal strategies for PFAS in wastewater.


Assuntos
Ácidos Alcanossulfônicos , Caprilatos , Fluorocarbonos , Purificação da Água , Águas Residuárias , Fluorocarbonos/análise , China
10.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279241

RESUMO

We previously discovered WS-6 as a new antidepressant in correlation to its function of stimulating neurogenesis. Herein, several different scaffolds (stilbene, 1,3-diphenyl 1-propene, 1,3-diphenyl 2-propene, 1,2-diphenyl acrylo-1-nitrile, 1,2-diphenyl acrylo-2-nitrile, 1,3-diphenyl trimethylamine), further varied through substitutions of twelve amide substituents plus the addition of a methylene unit and an inverted amide, were examined to elucidate the SARs for promoting adult rat neurogenesis. Most of the compounds could stimulate proliferation of progenitors, but just a few chemicals possessing a specific structural profile, exemplified by diphenyl acrylonitrile 29b, 32a, and 32b, showed better activity than the clinical drug NSI-189 in promoting newborn cells differentiation into mature neurons. The most potent diphenyl acrylonitrile 32b had an excellent brain AUC to plasma AUC ratio (B/P = 1.6), suggesting its potential for further development as a new lead.


Assuntos
Acrilonitrila , Alcenos , Compostos de Bifenilo , Ratos , Animais , Acrilonitrila/farmacologia , Neurogênese , Hipocampo , Nitrilas/farmacologia , Amidas
11.
Eur J Med Chem ; 266: 116113, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215588

RESUMO

Recently, some inhibitors of soluble epoxide hydrolase (sEH) showed limited potential in treating sepsis by increasing survival time, but they have unfortunately failed to improve survival rates. In this study, we initially identified a new hit 11D, belonging to a natural skeleton known as stilbene and having an IC50 of 644 nM on inhibiting murine sEH. Natural scaffold-based sEH inhibitors are paid less attention. A combination of structure-activity relationships (SARs)-guided structural optimization and computer-aided skeleton growth led to a highly effective lead compound 70P (IC50: 4.0 nM). The dose-response study indicated that 70P (at doses of 0.5-5 mg/kg, ip.) significantly increased survival rates and survival time by reducing the levels of the inflammatory factors TNF-α and IL-6 in the liver. Interestingly, 70P exhibited much higher accumulation in the liver than in plasma (AUC ratio: 175). In addition, 70P exhibits equal IC50 value (1.5 nM) on inhibiting human sEH as EC5026 (1.7 nM). In conclusion, the natural scaffold-extended sEH inhibitor 70P has the potential to become a new promising lead for addressing the unmet medical need in sepsis treatment, which highlighted the importance of natural skeleton in developing sEH inhibitors.


Assuntos
Epóxido Hidrolases , Sepse , Camundongos , Humanos , Animais , Relação Estrutura-Atividade , Fígado/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Sepse/tratamento farmacológico
12.
Eur Radiol ; 34(2): 745-754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37589899

RESUMO

OBJECTIVE: To investigate whether the feeding artery (FA) feature can aid in discriminating small hepatocellular carcinoma (HCC) using the contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) from precancerous lesions. METHODS: Between June 2017 and May 2021, a total of 347 patients with 351 precancerous liver lesions or small HCCs who underwent CEUS were enrolled. Two independent radiologists assigned LI-RADS categories to all lesions and assessed the presence of the FA feature, which was used as an ancillary feature to either upgrade or downgrade the LI-RADS category. The diagnostic performance of CEUS LI-RADS, both with and without the FA feature, was evaluated based on accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS: The FA feature was found to be more prevalent in HCC (85.54%, p < 0.001) than in regenerative nodules (RNs, 29.73%), low-grade dysplastic nodules (LGDNs, 33.33%), and high-grade dysplastic nodules (HGDNs, 55.26%). Furthermore, the presence of arterial phase hyperenhancement (APHE), washout (WO), and FA in liver nodules was associated with a higher expression of GPC-3 and Ki-67 compared to the group without these features (p < 0.001). After adjusting, the sensitivity and accuracy of LR-5 for HCC improved from 68.67% (95%CI: 62.46%, 74.30%) to 77.51% (95%CI: 71.72%, 82.44%) and from 69.23% (95%CI: 64.11%, 74.02%) to 73.79% (95%CI: 68.86%, 78.31%), respectively. CONCLUSION: The FA feature is a valuable feature for distinguishing small HCC and precancerous lesions and could be added as a possible ancillary feature in CEUS LI-RADS which was backed up by biomarkers. CLINICAL RELEVANCE STATEMENT: The presence of a feeding artery is a valuable imaging feature in the differentiation of HCC and precancerous lesions. Incorporating this characteristic in the CEUS LI-RADS can enhance the diagnostic ability. KEY POINTS: • Feeding artery is more frequent in HCC than in regenerative nodules, low-grade dysplastic nodules, and high-grade dysplastic nodules. • Feeding artery feature is a valuable ancillary feature for CEUS LI-RADS to differentiate regenerative nodules, low-grade dysplastic nodules, high-grade dysplastic nodules, and HCC. • The existence of feeding artery, arterial phase hyperenhancement, and washout is associated with more GPC-3 positive expression and higher Ki-67 expression than the group without these features.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lesões Pré-Cancerosas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Antígeno Ki-67 , Meios de Contraste/farmacologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Artérias/patologia , Hiperplasia/patologia , Lesões Pré-Cancerosas/patologia , Sensibilidade e Especificidade
13.
Am J Nephrol ; 55(1): 86-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37734331

RESUMO

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Assuntos
Dietilexilftalato , MicroRNAs , Ácidos Ftálicos , Animais , Camundongos , Masculino , Dietilexilftalato/toxicidade , Óleo de Milho/farmacologia , Camundongos Endogâmicos C57BL , Antioxidantes , Rim , MicroRNAs/genética , MicroRNAs/farmacologia , RNA Mensageiro , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Guanosina Trifosfato/farmacologia
14.
Ecotoxicol Environ Saf ; 269: 115749, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039854

RESUMO

Micro(nano)plastics are prevalent in the environment, and prolonged exposure to them represents a threat to human health. The goal of this study is to assess the health risk of long-term exposure to nanoplastics (NPs) at environmental concentrations on the intestinal mechanical and immune barrier in mice. In this study, mice were provided drinking water containing polystyrene NPs (PS-NPs; 0.1, 1, and 10 mg·L-1) for 32 consecutive weeks. The levels of endocytosis proteins caveolin and clathrin and of tight junctional proteins claudin-1, occludin, and ZO-1, and morphological changes, proportion of lymphocytes B in MLNs and lymphocytes T in IELs and LPLs were determined by immunohistochemistry, hematoxylin-eosin, and flow cytometry assays in the intestinal tissues of mice at 28 weeks. The activities or concentrations of ROS, SOD, MDA, and GSH-Px and inflammatory factors (IL-1ß, IL-6, and TNF-α) in the intestinal tissues of mice were measured by ELISA at 12, 16, 20, 24, and 32 weeks. Compared with the control group, oral ingested PS-NPs entered the intestinal tissues of mice and upregulated expression levels of the clathrin and caveolin. The intestinal tissue structure of mice in the PS-NPs (1 and 10 mg·L-1) exposure groups showed significant abnormalities, such as villus erosion, decreased of crypts numbers and large infiltration of inflammatory cells. Exposure to 0.1 mg·L-1 PS-NPs decreased occludin protein levels, but not claudin-1 and ZO-1 levels. The levels of these three tight junction proteins decreased significantly in the 1 and 10 mg·L-1 PS-NPs exposed groups. Exposure to PS-NPs led to a significant time- and dose-dependent increase in ROS and MDA levels, and concurrently decreased GSH-Px and SOD contents. Exposure to PS-NPs increased the proportion of B cells in MLNs, and decreased the proportion of CD8+ T cells in IELs and LPLs. The levels of pro-inflammatory cytokines IL-6, TNF-α and IL-1ß were markedly elevated after PS-NPs exposure. Long-term PS-NPs exposure impaired intestinal mechanical and immune barrier, and indicate a potentially significant threat to human health.


Assuntos
Nanopartículas , Poliestirenos , Humanos , Poliestirenos/toxicidade , Microplásticos , Linfócitos T CD8-Positivos , Interleucina-6 , Ocludina , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Caveolinas , Clatrina , Superóxido Dismutase
15.
PLoS Pathog ; 19(12): e1011796, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060599

RESUMO

Plant viruses seriously disrupt crop growth and development, and classic protein-targeted antiviral drugs could not provide complete protection against them. It is urgent to develop antiviral compounds with novel targets. Photodynamic therapy shows potential in controlling agricultural pests, but nonselective damage from reactive oxygen species (ROS) unexpectedly affects healthy tissues. A G-quadruplex (G4)-forming sequence in the tobacco mosaic virus (TMV) genome was identified to interfere the RNA replication in vitro, and affect the proliferation of TMV in tobacco. N-methyl mesoporphyrin IX stabilizing the G4 structure exhibited inhibition against viral proliferation, which was comparable to the inhibition effect of ribavirin. This indicated that G4 could work as an antiviral target. The large conjugate planes shared by G4 ligands and photosensitizers (PSs) remind us that the PSs could work as antiviral agents by targeting G4 in the genome of TMV. Chlorin e6 (Ce6) was identified to stabilize the G4 structure in the dark and selectively cleave the G4 sequence by producing ROS upon LED-light irradiation, leading to 92.2% inhibition against TMV in vivo, which is higher than that of commercial ningnanmycin. The inhibition of Ce6 was lost against the mutant variants lacking the G4-forming sequence. These findings indicated that the G-quadruplex in the TMV genome worked as an important structural element regulating viral proliferation, and could act as the antiviral target of photodynamic therapy.


Assuntos
Fotoquimioterapia , Vírus do Mosaico do Tabaco , Espécies Reativas de Oxigênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Proliferação de Células , Relação Estrutura-Atividade
16.
Bull Environ Contam Toxicol ; 112(1): 9, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081971

RESUMO

In this study, the effects of manure on the availability of sulfonamide antibiotics (SAs) in soils were explored in situ by the Diffusive gradients in thin films (DGT) technique. Five antibiotics, including sulfadiazine (SDZ), sulfamethoxazole (SMX), sulfamethazine (SMZ), sulfachloropyridazine (SCP), and sulfadimethoxine (SDM), were selected as target compounds. Results showed that the manure application to soil could reduce the antibiotic availability indicated by DGT. DGT measurement (CDGT) showed good correlations with the soil solution concentrations (Cd). Manure application can suppress the fluxes of SAs from the soil to the soil solution. Using the DGT-induced soil/sediment flux model (DIFS), the labile pool size (Kdl), the rate constants (k1, k-1) of adsorption and desorption and response time (Tc) of SAs in soils were obtained. The addition of manure increased extractable fraction, labile pool size (Kdl) and k1 but decreased k-1. Together with the nonlinear relationship between DGT fluxes and the reciprocal of diffusive layer thickness (Δg), these findings suggested that the release of SAs from soil particles into the soil solution is thermodynamically and kinetically limited, and the manure application could enhance this limitation. This study offers insight into antibiotic availability in soils caused by manure application.


Assuntos
Antibacterianos , Poluentes do Solo , Solo , Esterco , Sulfanilamida , Sulfonamidas , Poluentes do Solo/análise
17.
Microb Pathog ; 184: 106388, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832834

RESUMO

YAP participates in autophagy associated with many diseases. In this study, we demonstrate that YAP promotes autophagy by interacting with beclin 1, upregulating beclin 1 and LC3B-II protein expression, and promoting autophagosome formation after H. pylori infection in a vacuolating cytotoxin A-dependent manner. The protein levels of ß-catenin in the cytoplasm and nuclei of GES-1 cells and the mRNA levels of Axin2, Myc, Lgr5, and Ccnd1 were increased in H. pylori-infected cells or YAP-overexpressed cells, but were decreased in YAP-silenced cells. The ß-catenin inhibitor XAV939 significantly downregulated autophagy, whereas the activator LiCl showed opposite effects. An H. pylori-infected mouse model of gastric carcinoma was successfully established. The mouse model showed that H. pylori infection, when combined with NMU, promoted the tumorigenesis of gastric tissues; increased IL-1ß, IL-6, and TNF-α levels; promoted NO release; and increased the expression of beclin 1, LC3B-II more than NMU alone. Chloroquine inhibited these phenomena, but did not completely attenuate the effects of H. pylori. These results demonstrate that chloroquine can be used as a drug for the treatment of H. pylori-related gastric cancer, but the treatment should simultaneously remove H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Camundongos , Animais , beta Catenina/metabolismo , Cloroquina/farmacologia , Cloroquina/metabolismo , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Neoplasias Gástricas/genética , Autofagia , Modelos Animais de Doenças , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/patologia
18.
J Biomol Struct Dyn ; : 1-14, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870047

RESUMO

The high structural homology of histone deacetylases 6 and 8 (HDAC6/8) poses a challenge in achieving isoform selectivity and has resulted in adverse side effects due to pan-inhibition in clinical applications. Additionally, the rational design of dual-target inhibitors, centered on HDAC6/8, demands a profound understanding of their selectivity mechanisms. Addressing the urgent need for enhanced specificity in the development of inhibitors targeting specific isoforms, we elucidate the mechanism underpinning the selective inhibition of HDAC6/8 inhibitors through in-silico strategies. The hydrogen bonding interaction with Asp101 and Tyr306 is a key factor that enables compound 12b to selectively inhibit HDAC8. Its favorable spatial orientation places the Cap group of 12b between Tyr306 and Tyr100, resulting in an overall L-shaped conformation. These two factors significantly contribute to the selective inhibitory activity of 12b against HDAC8. The zinc binding group (ZBG) of compound NN-390 forms a hydrogen bond with His610, a key residue of HDAC6, facilitating stable chelation with zinc ions. In addition, the Cap group of NN-390 interacts with Phe620 and Phe680 via van der Waals forces, leading to an overall Y-shaped conformation. The aforementioned factors are the main reasons for the selective inhibition of HDAC6 by NN-390. Furthermore, whether the Cap group is in the para or meta-position will influence the selective inhibition of either HDAC6 or HDAC8. We believe these clues can offer valuable insights for the rational design of selective inhibitors targeting HDAC6/8 and pave the way for rational design of dual-target HDAC6/8-based inhibitors.Communicated by Ramaswamy H. Sarma.

19.
Foods ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835237

RESUMO

Tea polysaccharide (TPS) is a bioactive compound extracted from tea. It has raised great interest among researchers due to its bioactivity. However, few studies focused on the diversity of TPS in its compositions and antioxidant activity. This study collected 140 different tea varieties from four tea germplasm gardens in China, and their TPSs in tea shoots were extracted. The extraction efficiency, composition contents, including neutral sugar, uronic acid, protein, and tea polyphenols, and the scavenging abilities of hydroxyl radical (·OH) and superoxide radical (O2-·) of 140 TPSs were determined and analyzed. The results showed significant differences in the compositions and antioxidant activities of TPS extracted from different tea varieties. By applying hierarchical clustering analysis (HCA), we selected nine tea varieties with high TPS extraction efficiency and 26 kinds of TPS with high antioxidant capacity.

20.
Nanomaterials (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836364

RESUMO

Perovskite quantum dots (QDs), emerging with excellent bright-green photoluminescence (PL) and a large absorption coefficient, are of great potential for the fabrication of light sources in underwater optical wireless communication systems. However, the instability caused by low formation energy and abundant surface traps is still a major concern for perovskite-based light sources in underwater conditions. Herein, we propose ultra-stable zero dimensional-two dimensional (0D-2D) CsPbBr3 QD/1,4-bis(4-methylstyryl)benzene (p-MSB) nanoplate (NP) heterostructures synthesized via a facile approach at room temperature in air. CsPbBr3 QDs can naturally nucleate on the p-MSB NP toluene solution, and the radiative combination is drastically intensified owing to the electron transfer within the typical type-II heterostructures, leading to a sharply increased PLQY of the heterostructure thin films up to 200% compared with the pristine sample. The passivation of defects within CsPbBr3 QDs can be effectively realized with the existence of p-MSB NPs, and thus the obviously improved PL is steadily witnessed in an ambient atmosphere and thermal environment. Meanwhile, the enhanced humidity stability and a peak EQE of 9.67% suggests a synergetic strategy for concurrently addressing the knotty problems on unsatisfied luminous efficiency and stability of perovskites for high-performance green-emitting optoelectronic devices in underwater applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA