Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 595(7866): 272-277, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163067

RESUMO

Diet is a major factor that shapes the gut microbiome1, but the consequences of diet-induced changes in the microbiome for host pathophysiology remain poorly understood. We conducted a randomized human intervention study using a very-low-calorie diet (NCT01105143). Although metabolic health was improved, severe calorie restriction led to a decrease in bacterial abundance and restructuring of the gut microbiome. Transplantation of post-diet microbiota to mice decreased their body weight and adiposity relative to mice that received pre-diet microbiota. Weight loss was associated with impaired nutrient absorption and enrichment in Clostridioides difficile, which was consistent with a decrease in bile acids and was sufficient to replicate metabolic phenotypes in mice in a toxin-dependent manner. These results emphasize the importance of diet-microbiome interactions in modulating host energy balance and the need to understand the role of diet in the interplay between pathogenic and beneficial symbionts.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Restrição Calórica , Dieta Redutora , Microbioma Gastrointestinal/fisiologia , Adiposidade , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Toxinas Bacterianas/metabolismo , Ácidos e Sais Biliares/metabolismo , Peso Corporal , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/metabolismo , Metabolismo Energético , Humanos , Absorção Intestinal , Masculino , Camundongos , Nutrientes/metabolismo , Simbiose , Redução de Peso
2.
Cell Host Microbe ; 21(3): 334-343, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279345

RESUMO

New influenza vaccines that provide effective and broad protection are desperately needed. Live attenuated viruses are attractive vaccine candidates because they can elicit both humoral and cellular immune responses. However, recent formulations of live attenuated influenza vaccines (LAIVs) have not been protective. We combined high-coverage transposon mutagenesis of influenza virus with a rapid high-throughput screening for attenuation to generate W7-791, a live attenuated mutant virus strain. W7-791 produced only a transient asymptomatic infection in adult and neonatal mice even at doses 100-fold higher than the LD50 of the parent strain. A single administration of W7-791 conferred full protection to mice against lethal challenge with H1N1, H3N2, and H5N1 strains, and improved viral clearance in ferrets. Adoptive transfer of T cells from W7-791-immunized mice conferred heterologous protection, indicating a role for T cell-mediated immunity. These studies present an LAIV development strategy to rapidly generate and screen entire libraries of viral clones.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/isolamento & purificação , Infecções por Orthomyxoviridae/prevenção & controle , Linfócitos T/imunologia , Transferência Adotiva , Animais , Proteção Cruzada , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Furões , Testes Genéticos , Imunidade Heteróloga , Vacinas contra Influenza/administração & dosagem , Camundongos , Mutagênese Insercional , Infecções por Orthomyxoviridae/imunologia , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação
3.
Mod Pathol ; 29(9): 1012-27, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27255162

RESUMO

Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with liposarcomatous components. EGFR amplification was heterogeneous and present only in the non-heterologous component of one tumor with liposarcomatous differentiation. The results identify novel pathways involved in the pathogenesis of malignant phyllodes tumors, which significantly increase our understanding of tumor biology and have potential clinical impact.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Perfilação da Expressão Gênica/métodos , Genes ras , Tumor Filoide/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Diferenciação Celular , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Mutação , Fenótipo , Tumor Filoide/enzimologia , Tumor Filoide/patologia , São Francisco , Transcriptoma , Adulto Jovem
4.
J Immunol ; 194(4): 1545-54, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609843

RESUMO

Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-ß triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-ß production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-ß and cGAS transcripts, we have found that induction of IFN-ß is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.


Assuntos
Imunidade Inata/imunologia , Interferon Tipo I/biossíntese , Macrófagos/imunologia , Nucleotidiltransferases/imunologia , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Retroalimentação Fisiológica , Humanos , Immunoblotting , Interferon Tipo I/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
5.
Proc Natl Acad Sci U S A ; 112(1): 244-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535390

RESUMO

The candidate phylum TM7 is globally distributed and often associated with human inflammatory mucosal diseases. Despite its prevalence, the TM7 phylum remains recalcitrant to cultivation, making it one of the most enigmatic phyla known. In this study, we cultivated a TM7 phylotype (TM7x) from the human oral cavity. This extremely small coccus (200-300 nm) has a distinctive lifestyle not previously observed in human-associated microbes. It is an obligate epibiont of an Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase, thereby killing its host. This first completed genome (705 kb) for a human-associated TM7 phylotype revealed a complete lack of amino acid biosynthetic capacity. Comparative genomics analyses with uncultivated environmental TM7 assemblies show remarkable conserved gene synteny and only minimal gene loss/gain that may have occurred as TM7x adapted to conditions within the human host. Transcriptomic and metabolomic profiles provided the first indications, to our knowledge, that there is signaling interaction between TM7x and XH001. Furthermore, the induction of TNF-α production in macrophages by XH001 was repressed in the presence of TM7x, suggesting its potential immune suppression ability. Overall, our data provide intriguing insights into the uncultivability, pathogenicity, and unique lifestyle of this previously uncharacterized oral TM7 phylotype.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Genoma Bacteriano/genética , Parasitos/genética , Filogenia , Simbiose , Actinomyces , Animais , Bactérias/classificação , Bactérias/ultraestrutura , Especificidade de Hospedeiro , Humanos , Macrófagos/metabolismo , Dados de Sequência Molecular , Boca/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia , Transcriptoma/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Nat Commun ; 5: 5494, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25417649

RESUMO

The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is downregulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra-/- or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra-/- macrophages produce more IFNß than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of ß-catenin, a co-activator of IFNß enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections.


Assuntos
Herpesvirus Humano 1/imunologia , Interferon beta/antagonistas & inibidores , Receptor X Retinoide alfa/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Regulação para Baixo , Ácidos Graxos Insaturados/farmacologia , Células HEK293 , Herpes Simples/imunologia , Humanos , Interferon beta/imunologia , Ligantes , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Receptor X Retinoide alfa/antagonistas & inibidores , Receptor X Retinoide alfa/biossíntese , Tetra-Hidronaftalenos/farmacologia , Estomatite Vesicular/imunologia , Ensaio de Placa Viral , beta Catenina/metabolismo
7.
Immunity ; 38(1): 92-105, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23273844

RESUMO

Interferons (IFN) are essential antiviral cytokines that establish the cellular antiviral state through upregulation of hundreds of interferon-stimulated genes (ISGs), most of which have uncharacterized functions and mechanisms. We identified cholesterol-25-hydroxylase (CH25H) as a broadly antiviral ISG. CH25H converts cholesterol to a soluble antiviral factor, 25-hydroxycholesterol (25HC). 25HC treatment in cultured cells broadly inhibited growth of enveloped viruses including VSV, HSV, HIV, and MHV68 and acutely pathogenic EBOV, RVFV, RSSEV, and Nipah viruses under BSL4 conditions. It suppressed viral growth by blocking membrane fusion between virus and cell. In animal models, Ch25h-deficient mice were more susceptible to MHV68 lytic infection. Moreover, administration of 25HC in humanized mice suppressed HIV replication and reversed T cell depletion. Thus, our studies demonstrate a unique mechanism by which IFN achieves its antiviral state through the production of a natural oxysterol to inhibit viral entry and implicate membrane-modifying oxysterols as potential antiviral therapeutics.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/metabolismo , Interferons/farmacologia , Esteroide Hidroxilases/metabolismo , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/virologia , Vírus de DNA/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxicolesteróis/farmacologia , Fusão de Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Vírus de RNA/efeitos dos fármacos , Esteroide Hidroxilases/genética , Proteínas Virais/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(11): 4239-44, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371602

RESUMO

Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses.


Assuntos
Vírus de DNA/imunologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Vesiculovirus/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células da Medula Óssea/citologia , Vírus de DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Interferon Tipo I/farmacologia , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Vesiculovirus/efeitos dos fármacos
9.
Curr Opin Immunol ; 23(1): 57-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123041

RESUMO

Type I interferons (IFNs) are cytokines of the innate immune system that induce antiviral protein expression in response to viral infection. Various proteins and pathways have been shown to recognize nucleic acid ligands especially from RNA viruses. Here, we will review recent developments including transcription of DNA virus genomes into RNA ligands, and the recognition of viruses by TLR2 for interferon induction. The induced IFNs activate many interferon stimulated genes (ISGs) that have direct antiviral effects. Recent studies have identified IFITM proteins as the first ISG to inhibit viral entry processes and revealed mechanistic understanding of known antiviral ISGs such as ISG15 and Viperin.


Assuntos
Interferon Tipo I/imunologia , Viroses/imunologia , Animais , DNA Viral/genética , Humanos , Receptor 2 Toll-Like/imunologia , Transcrição Gênica
10.
Plant Physiol ; 146(2): 539-53, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18162590

RESUMO

Protein dephosphorylation by the serine/threonine protein phosphatase 2A (PP2A) modulates a broad array of cellular functions. PP2A normally acts as a heterotrimeric holoenzyme complex comprising a catalytic subunit bound by regulatory A and B subunits. Characterization of the regulatory A subunit isoforms (ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 [RCN1], PP2AA2, and PP2AA3) of Arabidopsis thaliana PP2A has shown that RCN1 plays a primary role in controlling root and hypocotyl PP2A activity in seedlings. Here we show that hypocotyl and root growth exhibit different requirements for RCN1-mediated regulation of PP2A activity. Roots of rcn1 mutant seedlings exhibit characteristic abnormalities in cell division patterns at the root apical meristem, as well as reduced growth under ionic, osmotic, and oxidative stress conditions. We constructed chimeric A subunit genes and found that restoration of normal root tip development in rcn1 plants requires both regulatory and coding sequences of RCN1, whereas the hypocotyl elongation defect of rcn1 plants can be complemented by either RCN1 or PP2AA3 transgenes. Furthermore, the RCN1 and PP2AA3 proteins exhibit ubiquitous subcellular localization patterns in seedlings and both associate with membrane compartments. Together, these results show that RCN1-containing PP2A has unique functions that cannot be attributed to isoform-specific expression and localization patterns. Postembryonic RCN1 function is required to maintain normal auxin distribution and stem cell function at the root apex. Our data show that RCN1-regulated phosphatase activity plays a unique role in regulating postembryonic root development and stress response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Proteína Fosfatase 2/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/enzimologia , Isoformas de Proteínas , Proteína Fosfatase 2/genética , Proteínas Recombinantes de Fusão
11.
EMBO J ; 25(14): 3257-63, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16858409

RESUMO

Upon recognition of viral infection, RIG-I and Helicard recruit a newly identified adapter termed Cardif, which induces type I interferon (IFN)-mediated antiviral responses through an unknown mechanism. Here, we demonstrate that TRAF3, like Cardif, is required for type I interferon production in response to intracellular double-stranded RNA. Cardif-mediated IFNalpha induction occurs through a direct interaction between the TRAF domain of TRAF3 and a TRAF-interaction motif (TIM) within Cardif. Interestingly, while the entire N-terminus of TRAF3 was functionally interchangeable with that of TRAF5, the TRAF domain of TRAF3 was not. Our data suggest that this distinction is due to an inability of the TRAF domain of TRAF5 to bind the TIM of Cardif. Finally, we show that preventing association of TRAF3 with this TIM by mutating two critical amino acids in the TRAF domain also abolishes TRAF3-dependent IFN production following viral infection. Thus, our findings suggest that the direct and specific interaction between the TRAF domain of TRAF3 and the TIM of Cardif is required for optimal Cardif-mediated antiviral responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA de Cadeia Dupla/fisiologia , RNA Viral/antagonistas & inibidores , RNA Viral/fisiologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/biossíntese , Líquido Intracelular/fisiologia , Camundongos , RNA Viral/genética , Vírus Sendai/genética , Vírus Sendai/fisiologia , Fator 3 Associado a Receptor de TNF , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo
12.
Lab Chip ; 6(2): 191-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16450027

RESUMO

Experimental systems that provide temporal and spatial control of chemical gradients are required for probing into the complex mechanisms of eukaryotic cell chemotaxis. However, no current technique can simultaneously generate stable chemical gradients and allow fast gradient changes. We developed a microfluidic system with microstructured membranes for exposing neutrophils to fast and precise changes between stable, linear gradients of the known chemoattractant Interleukin-8 (IL-8). We observed that rapidly lowering the average concentration of IL-8 within a gradient, while preserving the direction of the gradient, resulted in temporary neutrophil depolarization. Fast reversal of the gradient direction while increasing or decreasing the average concentration also resulted in temporary depolarization. Neutrophils adapted and maintained their directional motility, only when the average gradient concentration was increased and the direction of the gradient preserved. Based on these observations we propose a two-component temporal sensing mechanism that uses variations of chemokine concentration averaged over the entire cell surface and localized at the leading edge, respectively, and directs neutrophil responses to changes in their chemical microenvironment.


Assuntos
Quimiotaxia/efeitos dos fármacos , Interleucina-8/farmacologia , Técnicas Analíticas Microfluídicas/instrumentação , Neutrófilos/efeitos dos fármacos , Desenho de Equipamento , Humanos , Interleucina-8/química , Masculino , Neutrófilos/química , Neutrófilos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA