Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38002786

RESUMO

BACKGROUND: Plasma levels of von Willebrand factor (VWF) are significantly elevated in patients with coronavirus disease 2019 (COVID-19). However, dynamic changes and prognostic value of this biomarker in hospitalized patients with COVID-19 have not been determined. METHODS: A total of 124 patients infected with SARS-CoV-2 were prospectively recruited for the study. Serial blood samples were obtained at the time of admission (D1), 3-4 days following standard-care treatments (D2), and 1-2 days prior to discharge or any time collected prior to death (D3). Plasma VWF antigen, ADAMTS13 antigen, and ADAMTS13 proteolytic activity, as well as the ratio of VWF/ADAMTS13 were determined, followed by various statistical analyses. RESULTS: On admission, plasma levels of VWF in COVID-19 patients were significantly elevated compared with those in the healthy controls, but no statistical significance was detected among patients with different disease severity. Plasma ADAMTS13 activity but not its antigen levels were significantly lower in patients with severe or critical COVID-19 compared with that in other patient groups. Interestingly, the ratios of plasma VWF antigen to ADAMTS13 antigen were significantly higher in patients with severe or critical COVID-19 than in those with mild to moderate disease. More importantly, plasma levels of VWF and the ratios of VWF/ADAMTS13 were persistently elevated in patients with COVID-19 throughout hospitalization. Kaplan-Meier and Cox proportional hazard regression analyses demonstrated that an increased plasma level of VWF or ratio of VWF/ADAMTS13 at D2 and D3 was associated with an increased mortality rate. CONCLUSIONS: Persistent endotheliopathy, marked by the elevated levels of plasma VWF or VWF/ADAMTS13 ratio, is present in all hospitalized patients following SARS-CoV-2 infection, which is strongly associated with mortality.

2.
BMC Cancer ; 23(1): 844, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684587

RESUMO

MOTIVATION: Ovarian cancer (OC) is a highly lethal gynecological malignancy. Extensive research has shown that OC cells undergo significant metabolic alterations during tumorigenesis. In this study, we aim to leverage these metabolic changes as potential biomarkers for assessing ovarian cancer. METHODS: A functional module-based approach was utilized to identify key gene expression pathways that distinguish different stages of ovarian cancer (OC) within a tissue biopsy cohort. This cohort consisted of control samples (n = 79), stage I/II samples (n = 280), and stage III/IV samples (n = 1016). To further explore these altered molecular pathways, minimal spanning tree (MST) analysis was applied, leading to the formulation of metabolic biomarker hypotheses for OC liquid biopsy. To validate, a multiple reaction monitoring (MRM) based quantitative LCMS/MS method was developed. This method allowed for the precise quantification of targeted metabolite biomarkers using an OC blood cohort comprising control samples (n = 464), benign samples (n = 3), and OC samples (n = 13). RESULTS: Eleven functional modules were identified as significant differentiators (false discovery rate, FDR < 0.05) between normal and early-stage, or early-stage and late-stage ovarian cancer (OC) tumor tissues. MST analysis revealed that the metabolic L-arginine/nitric oxide (L-ARG/NO) pathway was reprogrammed, and the modules related to "DNA replication" and "DNA repair and recombination" served as anchor modules connecting the other nine modules. Based on this analysis, symmetric dimethylarginine (SDMA) and arginine were proposed as potential liquid biopsy biomarkers for OC assessment. Our quantitative LCMS/MS analysis on our OC blood cohort provided direct evidence supporting the use of the SDMA-to-arginine ratio as a liquid biopsy panel to distinguish between normal and OC samples, with an area under the ROC curve (AUC) of 98.3%. CONCLUSION: Our comprehensive analysis of tissue genomics and blood quantitative LC/MSMS metabolic data shed light on the metabolic reprogramming underlying OC pathophysiology. These findings offer new insights into the potential diagnostic utility of the SDMA-to-arginine ratio for OC assessment. Further validation studies using adequately powered OC cohorts are warranted to fully establish the clinical effectiveness of this diagnostic test.


Assuntos
Óxido Nítrico , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Biópsia , Área Sob a Curva , Arginina
3.
Blood ; 141(24): 2993-3005, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023370

RESUMO

Antibody binding to a plasma metalloprotease, a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13), is necessary for the development of immune thrombotic thrombocytopenic purpura (iTTP). Inhibition of ADAMTS13-mediated von Willebrand factor (VWF) cleavage by such antibodies clearly plays a role in the pathophysiology of the disease, although the mechanisms by which they inhibit ADAMTS13 enzymatic function are not fully understood. At least some immunoglobulin G-type antibodies appear to affect the conformational accessibility of ADAMTS13 domains involved in both substrate recognition and inhibitory antibody binding. We used single-chain fragments of the variable region previously identified via phage display from patients with iTTP to explore the mechanisms of action of inhibitory human monoclonal antibodies. Using recombinant full-length ADAMTS13, truncated ADAMTS13 variants, and native ADAMTS13 in normal human plasma, we found that, regardless of the conditions tested, all 3 inhibitory monoclonal antibodies tested affected enzyme turnover rate much more than substrate recognition of VWF. Hydrogen-to-deuterium exchange plus mass spectrometry experiments with each of these inhibitory antibodies demonstrated that residues in the active site of the catalytic domain of ADAMTS13 are differentially exposed to solvent in the presence and absence of monoclonal antibody binding. These results support the hypothesis that inhibition of ADAMTS13 in iTTP may not necessarily occur because the antibodies directly prevent VWF binding, but instead because of allosteric effects that impair VWF cleavage, likely by affecting the conformation of the catalytic center in the protease domain of ADAMTS13. Our findings provide novel insight into the mechanism of autoantibody-mediated inhibition of ADAMTS13 and pathogenesis of iTTP.


Assuntos
Púrpura Trombocitopênica Idiopática , Púrpura Trombocitopênica Trombótica , Trombose , Humanos , Anticorpos Monoclonais , Fator de von Willebrand/metabolismo , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Autoanticorpos
4.
Cell Rep ; 36(4): 109421, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320342

RESUMO

Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.


Assuntos
Diferenciação Celular , Fosfatases de Especificidade Dupla , Megacariócitos , Fosfatases da Proteína Quinase Ativada por Mitógeno , Adulto , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Arginina/metabolismo , Linhagem Celular , Fosfatases de Especificidade Dupla/metabolismo , Estabilidade Enzimática , Células HEK293 , Sistema de Sinalização das MAP Quinases , Megacariócitos/citologia , Megacariócitos/enzimologia , Metilação , Camundongos Endogâmicos C57BL , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Síndromes Mielodisplásicas/enzimologia , Síndromes Mielodisplásicas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Poliubiquitina/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteólise , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Ubiquitinação
5.
Neoplasia ; 22(12): 789-799, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142243

RESUMO

BRAF inhibitors were approved for the treatment of BRAF-mutant melanoma. However, most patients acquire the resistance to BRAF inhibitors after several months of treatment. miR-524-5p is considered as a tumor suppressor in many cancers, including melanoma. In this study, we investigated the biological functions of miR-524-5p in melanoma with acquired resistance to BRAF inhibitor and evaluated the endogenous miR-524-5p expression as a biomarker for melanoma. The results showed that the expression of miR-524-5p was 0.481-fold lower in melanoma tissues (n = 117) than in nevus tissues (n = 40). Overexpression of miR-524-5p significantly reduced proliferative, anchorage-independent growth, migratory and invasive abilities of BRAF inhibitor-resistant melanoma cells. Moreover, the introduction of miR-524-5p led to a reduced development of BRAF inhibitor-resistant melanoma in vivo. Remarkably, the MAPK/ERK signaling pathway was decreased after treatment with miR-524-5p. Furthermore, next-generation sequencing analysis implied that the complement system, leukocyte extravasation, liver X receptor/retinoid-X-receptor activation, and cAMP-mediated signaling may be related to miR-524-5p-induced pathways in the resistant cells. The miR-524-5p level was higher on average in complete response and long-term partial response patients than in progressive disease and short-term partial response patients treated with BRAF inhibitors. Our results proposed that miR-524-5p could be considered as a target for treatment BRAF inhibitor-resistant melanoma and a prognostic marker in the response of patients to BRAF inhibitors for melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma , Camundongos , Mutação , Interferência de RNA , Vemurafenib/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Blood Adv ; 2(21): 2829-2836, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373889

RESUMO

Dynamic regulation of histone modification enzymes such as PRMT1 (protein arginine methyltransferase 1) determines the ordered epigenetic transitions in hematopoiesis. Sorting cells according to the expression levels of histone modification enzymes may further define subpopulations in hematopoietic lineages with unique differentiation potentials that are presently defined by surface markers. We discovered a vital near infrared dye, E84, that fluoresces brightly following binding to PRMT1 and excitation with a red laser. The staining intensity as measured by flow cytometry is correlated with the PRMT1 expression level. Importantly, E84 staining has no apparent negative effect on the proliferation of the labeled cells. Given that long-term hematopoietic stem cells (LT-HSCs) produce low levels of PRMT1, we used E84 to sort LT-HSCs from mouse bone marrow. We found that SLAM (the signalling lymphocyte activation molecule family) marker-positive LT-HSCs were enriched in the E84low cell fraction. We then performed bone marrow transplantations with E84high or E84low Lin-Sca1+Kit+ (LSK) cells and showed that whole blood cell lineages were successfully reconstituted 16 weeks after transplanting 200 E84low LSK cells. Thus, E84 is a useful new tool to probe the role of PRMT1 in hematopoiesis and leukemogenesis. Developing E84 and other small molecules to label histone modification enzymes provides a convenient approach without modifying gene loci to study the interaction between hematopoietic stem/progenitor cell epigenetic status and differentiation state.


Assuntos
Células Sanguíneas/metabolismo , Carbocianinas/química , Epigênese Genética , Corantes Fluorescentes/química , Proteína-Arginina N-Metiltransferases/genética , Animais , Ataxina-1/metabolismo , Células Sanguíneas/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Linhagem da Célula , Citometria de Fluxo/métodos , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
7.
J Invest Dermatol ; 138(4): 911-921, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29183729

RESUMO

Tumors grow because cancer cells lack the ability to balance cell survival and death signaling pathways. miR-596, a microRNA located at the 8p23.3 locus, has been shown by the TCGA-Assembler to be deleted in a significant number of melanoma samples. Here, we also validated the low levels of miR-596 in melanoma compared to tissue nevi, and Kaplan-Meier curve analysis revealed that low miR-596 expression was associated with worse overall survival. Moreover, we showed that miR-596 overexpression effectively inhibited MAPK/ERK signaling, cell proliferation, migration, and invasion and increased the cell apoptosis of melanoma cells. In addition, we found that miR-596 directly targets MEK1 and two apoptotic proteins, MCL1, and BCL2L1, in melanoma cells. Our findings indicated that miR-596 is an important miRNA that both negatively regulates the MAPK/ERK signaling pathway by targeting MEK1 and modulates the apoptosis pathway by targeting MCL1 and BCL2L1, suggesting that miR-596 could be a therapeutic candidate for treating melanoma, and a prognostic factor for melanoma patients.


Assuntos
DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Melanoma/metabolismo , Melanoma/patologia , MicroRNAs/biossíntese , Transdução de Sinais
8.
Sci Rep ; 6: 32523, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27597445

RESUMO

Cancer stem cells (CSCs), or cancer cells with stem cell-like properties, generally exhibit drug resistance and have highly potent cancer inducing capabilities. Genome-wide expression data collected at public repositories over the last few years provide excellent material for studies that can lead to insights concerning the molecular and functional characteristics of CSCs. Here, we conducted functional genomic studies of CSC based on fourteen PCA-screened high quality public CSC whole genome gene expression datasets and, as control, four high quality non-stem-like cancer cell and non-cancerous stem cell datasets from the Gene Expression Omnibus database. A total of 6,002 molecular signatures were taken from the Molecular Signatures Database and used to characterize the datasets, which, under two-way hierarchical clustering, formed three genotypes. Type 1, consisting of mainly glia CSCs, had significantly enhanced proliferation, and significantly suppressed epithelial-mesenchymal transition (EMT), related functions. Type 2, mainly breast CSCs, had significantly enhanced EMT, but not proliferation, related functions. Type 3, composed of ovarian, prostate, and colon CSCs, had significantly suppressed proliferation related functions and mixed expressions on EMT related functions.


Assuntos
Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Genótipo , Humanos , Análise de Componente Principal
9.
Chemistry ; 22(9): 2925-9, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26756283

RESUMO

Using a simple method, the aldehyde groups of zeolitic imidazolate framework-90 (ZIF-90) nanocrystals were converted into carboxyl, amino, and thiol groups, without affecting the integrity of the framework. Notably, for the first time, correlations between functionality and cytotoxicity are also demonstrated via in vitro cytotoxicity assays. The positive charged aminated-ZIF-90 presumably results in either perturbation of cell membrane, more efficient cell uptake, or both. Therefore, the half-maximal effective (EC50 ) concentration of aminated-ZIF-90 has a higher cytotoxicity of about 30 µg mL(-1) .


Assuntos
Imidazóis/química , Nanopartículas/química , Zeolitas/química , Zeolitas/toxicidade , Aldeídos/química , Aminação , Imidazóis/toxicidade , Modelos Moleculares , Compostos de Sulfidrila/química
10.
Oncotarget ; 5(19): 9444-59, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25275294

RESUMO

It has been well documented that miRNAs can modulate the effectiveness of cancer-associated signaling pathways. Mitogen-activated protein kinase (MAPK/ERK) signaling plays an essential role in the progression of many cancers, including melanoma and colon cancers. However, no single miRNA is reported to directly target multiple components of the MAPK/ERK pathway. We performed a miRNA PCR array screening with various MAPK/ERK signaling activities. The miRNA array data revealed that the expression of miR-524-5p was decreased in cells with an active MAPK/ERK pathway and confirmed that the expression of miR-524-5p is inversely associated with the activity of the MAPK/ERK pathway. We demonstrated that miR-524-5p directly binds to the 3'-untranslated regions of both BRAFandERK2 and suppresses the expression of these proteins. Because BRAF and ERK2 are the main components of MAPK signaling, the overexpression of miR-524-5p effectively inhibits MAPK/ERK signaling, tumor proliferation, and melanoma cell migration. Moreover, tumors overexpressing miR-524-5p were significantly smaller than those of the negative control mice. Our findings provide new insight into the role of miR-524-5p as an important miRNA that negatively regulates the MAPK/ERK signaling pathway, suggesting that miR-524-5p could be a potent therapeutic candidate for melanoma treatment.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Melanoma/patologia , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Melanoma/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/genética , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/biossíntese , Proteínas Proto-Oncogênicas B-raf/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA