Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Negl Trop Dis ; 18(2): e0011923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306392

RESUMO

Dengue virus (DENV) infection causes dengue fever, the most prevalent arthropod-transmitted viral disease worldwide. Viruses are acellular parasites and obligately rely on host cell machinery for reproduction. Previous studies have indicated metabolomic changes in endothelial cell models and sera of animal models and patients with dengue fever. To probe the immunometabolic mechanism of DENV infection, here, we report the metabolomic landscape of a human macrophage cell model of DENV infection and its antibody-dependent enhancement. DENV infection of THP-1-derived macrophages caused 202 metabolic variants, of which amino acids occupied 23.7%, fatty acids 21.78%, carbohydrates 10.4%, organic acids 13.37%, and carnitines 10.4%. These metabolomic changes indicated an overall anabolic signature, which was characterized by the global exhaustion of amino acids, increases of cellular fatty acids, carbohydrates and pentoses, but decreases of acylcarnitine. Significant activation of metabolic pathways of glycolysis, pentose phosphate, amino acid metabolism, and tricarboxylic acid cycle collectively support the overall anabolism to meet metabolic demands of DENV replication and immune activation by viral infection. Totally 88 of 202 metabolic variants were significantly changed by DENV infection, 36 of which met the statistical standard (P<0.05, VIP>1.5) of differentially expressed metabolites, which were the predominantly decreased variants of acylcarnitine and the increased variants of fatty acids and carbohydrates. Remarkably, 11 differentially expressed metabolites were significantly distinct between DENV only infection and antibody-dependent enhancement of viral infection. Our data suggested that the anabolic activation by DENV infection integrates the viral replication and anti-viral immune activation.


Assuntos
Carnitina/análogos & derivados , Vírus da Dengue , Dengue , Viroses , Animais , Humanos , Vírus da Dengue/fisiologia , Anticorpos Facilitadores , Replicação Viral , Macrófagos , Carboidratos , Aminoácidos , Ácidos Graxos
2.
J Med Virol ; 95(2): e28497, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36651302

RESUMO

To evaluate the effect of Nirmatrelvir-ritonavir therapy and coronavirus disease 2019 (COVID-19) vaccination on clinical outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron infection, we retrospectively analyzed the clinical data of 762 adult patients with confirmed Omicron BA2.2 variant infection, of them 488 patients received standard therapy and 274 patients received Nirmatrelvir-ritonavir therapy. Subjects were matched by propensity score matching using R language, the baseline factors were balanced by the nearest-neighbor matching method and were compared, together with the factors including progression to severe/critical disease, viral clearance time, length of hospital stay, and virological rebound of SARS-CoV-2 infection. Nirmatrelvir-ritonavir therapy significantly accelerated viral clearance at Days 14 and  28 during hospitalization, but it had no impact on disease progression, length of hospital stay, or infection rebound. In contrast, COVID-19 vaccination before admission was positively correlated with the viral clearance rate and negatively correlated with disease progression in a dose-dependent way. COVID-19 vaccination reduced the probability of infection rebound. Other factors such as the number of comorbidities, pneumonia on-admission, and high D2 levels were positively correlated with disease progression. Our study strongly recommended booster COVID-19 vaccination for the elderly population, particularly patients with comorbidities to prevent critical disease.


Assuntos
COVID-19 , Adulto , Humanos , Idoso , SARS-CoV-2 , Vacinas contra COVID-19 , Estudos Retrospectivos , Ritonavir , Tratamento Farmacológico da COVID-19 , Vacinação , Progressão da Doença
3.
Proteomics ; 23(2): e2200362, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254857

RESUMO

Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/metabolismo , Proteômica , Infecções por Enterovirus/metabolismo , Proteínas/metabolismo , Metabolômica , Redes e Vias Metabólicas
4.
Front Immunol ; 14: 1303058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292486

RESUMO

Background: Large sample of pregnant women vaccinated with COVID-19 vaccine has not been carried out in China. The objective of this study was to evaluate the safety and effectiveness of COVID-19 inactivated vaccine in pregnant women infected with the SARS-CoV-2 Omicron variant. Methods: A total of 1,024 pregnant women and 120 newborns were enrolled in this study. 707 pregnant women received one to three doses of the inactivated COVID-19 vaccine, and 317 unvaccinated patients served as the control group. A comparison was made between their clinical and laboratory data at different stages of pregnancy. Results: The incidence rate of patients infected with Omicron variant in the first, the second, and the third trimesters of pregnancy was 27.5%, 27.0%, and 45.5% in patients during, respectively. The corresponding length of hospital stay was 8.7 ± 3.3 days, 9.5 ± 3.3 days, and 11 ± 4.3 days, respectively. The hospitalization time of pregnant women who received 3 doses of vaccine was (8.8 ± 3.3) days, which was significantly shorter than that of non-vaccinated women (11.0 ± 3.9) days. (P<0.0001). The positive rate of SARS-CoV-2 IgG in patients in the early stage of pregnancy was 28.8%, while that in patients in the late stage of pregnancy was 10.3%. However, three-doses of vaccination significantly increased the SARS-CoV-2 IgG positive rate to 49.5%. The hospitalization time of SARS-CoV-2 IgG-positive patients was shorter than that of negative patients (9.9 ± 3.5 days), which was 7.4 ± 2.0 days. 12.2% of vaccinated women experienced mild adverse reactions, manifested as fatigue (10.6%) and loss of appetite (1.6%). The vaccination of mother did not affect her choice of future delivery mode and the Apgar score of their newborn. All newborns tested negative for SARS-CoV-2 nucleic acid, as well as for IgG and IgM antibodies. Conclusions: Women in the third trimester of pregnancy are highly susceptible to infection with the Omicron strain. The vaccination of pregnant women with COVID-19 vaccine can accelerate the process of eliminating SARS-CoV-2 virus, and is considered safe for newborns. The recommended vaccination includes three doses.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Humanos , Recém-Nascido , Gravidez , Anticorpos Antivirais , China , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunoglobulina G , Complicações Infecciosas na Gravidez/prevenção & controle , SARS-CoV-2 , Vacinação
5.
J Thorac Dis ; 14(10): 3762-3772, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36389319

RESUMO

Background: State-of-the-art thoracic magnetic resonance imaging (MRI) plays a complementary role in the assessment of pulmonary nodules/masses which potentially indicate to cancer. We aimed to evaluate the sensitivity and specificity of MRI in diagnosis of pulmonary nodules/masses. Methods: Sixty-eight patients with computed tomography (CT)-detected pulmonary nodules/masses underwent 3T MRI (T1-VIBE, T1-starVIBE, T2-fBLADE turbo spin-echo, and T2-SPACE). The detection rate was calculated for each of the different subgroups of pulmonary nodules according to lung imaging reporting and data system (Lung-RADS). The four MRI sequences were compared in terms of detection rate and image quality-signal to noise ratio (SNR), contrast to noise ratio (CNR) and 5-point scoring scale. Agreement of lesion size measurement between CT and MRI was assessed by intraclass correlation coefficient (ICC). The picture-SNR, lesion-SNR and CNR of each sequence were analyzed by Mann-Whitney U test. Results: In total, 232 pulmonary lesions were detected by CT. The CT showed 86 solid nodules (SNs) <6 mm, 15 SNs between 6-8 mm, 35 SNs between 8-15 mm, and 52 SNs between 15-30 mm. The T1-VIBE, T1-starVIBE, T2-fBLADE TSE and T2-SPACE sequences accurately detected 141 SNs (141/188, 75%/83.3%), 150 SNs (150/188, 79.8%/100%), 166 SNs (166/188, 88.3%/66.7%) and 169 SNs (169/188, 89.9%/53.3%), respectively. Four ground glass nodules (GGNs) (4/6) were detected by T2-fBLADE TSE. Twelve part-solid nodules (PSNs) (12/22) were detected by T1-VIBE and 20 PSNs (20/22) by T2-SPACE. A total of 100 lesions (2.2±1.4 cm, 0.8-7.3 cm) were accurately detected and measured by the four MRI sequences with ICC >0.96. The picture-SNR, lesion-SNR and CNR by T1-starVIBE were higher than those by T1-VIBE (P<0.001). The lesion-SNR and CNR by T2-fBLADE TSE were higher than those by T2-SPACE (P=0.006, 0.038). 86% of images by T1-starVIBE, 92% by T2-fBLADE TSE, 90% by T2-SPACE and 93% by T1-VIBE were scored 3 or more. Conclusions: MRI achieves high sensitivity and specificity for different type of pulmonary nodules detection and is an effective alternative to CT as a diagnostic tool for pulmonary nodules.

7.
Front Oncol ; 12: 836087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860571

RESUMO

Background: Chronic inflammation contributes to approximately 20% of cancers; the underlying mechanisms are still elusive. Here, using an animal model of colitis to colon-cancerous transformation, we demonstrated that endoplasmic reticulum (ER) stress couples with metabolic reprogramming to promote a malignant transformation of chronic inflammation. Methods: The animal model for chronic colitis to colon-cancerous transformation was established in C57BL/6N mice by azoxymethane (AOM) and dextran sodium sulfate (DSS) treatments. The differential proteins in control and AOM/DSS-treated colon mucosa were determined using proteomic analysis; the kinetics of metabolic modifications were monitored by mitochondrial oxygen flux, extracellular acidification, and targeted metabolomics; the molecule linker between ER stress and metabolic modifications were identified by coimmunoprecipitation, KEGG pathway analysis, and the subcutaneous tumor model using gene-specific knockdown colon cancer cells. Tissue array analysis were used to evaluate the differential protein in cancer and cancer-adjacent tissues. Results: AOM/DSS treatment induced 38 tumors in 10 mice at the 14th week with the mean tumor size 9.35 ± 3.87 mm2, which was significantly decreased to 5.85 ± 0.95 mm2 by the ER stress inhibitor 4-phenylbutyric acid (4PBA). Seven differential proteins were determined from control (1,067 ± 48) and AOM/DSS-treated mucosa (1,077 ± 59); the level of ER protein PDIA2 (protein disulfide isomerase-associated 2) was increased over 7-fold in response to AOM/DSS treatment. PDIA2 interacted with 420 proteins that were involved in 8 signaling pathways, in particular with 53 proteins in metabolic pathways. PDIA2 translocated from ER to mitochondria and interacted with the components of complexes I and II to inhibit oxophosphorylation but increase glycolysis. Knockdown PDIA2 in colon cancer cells restored the metabolic imbalance and significantly repressed tumor growth in the xenograft animal model. 4PBA therapy inhibited the AOM/DSS-mediated overexpression of PDIA2 and metabolic modifications and suppressed colon cancer growth. In clinic, PDIA2 was overexpressed in colon cancer tissues rather than cancer-adjacent tissues and was related with the late stages and lymph node metastasis of colon cancer. Conclusions: Persistent ER stress reprograms the metabolism to promote the malignant transformation of chronic colitis; PDIA2 serves as a molecule linker between ER stress and metabolic reprogramming. The inhibition of ER stress restores metabolic homeostasis and attenuates the cancerous transformation of chronic inflammation.

8.
Front Med (Lausanne) ; 8: 651556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211983

RESUMO

Objectives: Both coronavirus disease 2019 (COVID-19) pneumonia and influenza A (H1N1) pneumonia are highly contagious diseases. We aimed to characterize initial computed tomography (CT) and clinical features and to develop a model for differentiating COVID-19 pneumonia from H1N1 pneumonia. Methods: In total, we enrolled 291 patients with COVID-19 pneumonia from January 20 to February 13, 2020, and 97 patients with H1N1 pneumonia from May 24, 2009, to January 29, 2010 from two hospitals. Patients were randomly grouped into a primary cohort and a validation cohort using a seven-to-three ratio, and their clinicoradiologic data on admission were compared. The clinicoradiologic features were optimized by the least absolute shrinkage and selection operator (LASSO) logistic regression analysis to generate a model for differential diagnosis. Receiver operating characteristic (ROC) curves were plotted for assessing the performance of the model in the primary and validation cohorts. Results: The COVID-19 pneumonia mainly presented a peripheral distribution pattern (262/291, 90.0%); in contrast, H1N1 pneumonia most commonly presented a peribronchovascular distribution pattern (52/97, 53.6%). In LASSO logistic regression, peripheral distribution patterns, older age, low-grade fever, and slightly elevated aspartate aminotransferase (AST) were associated with COVID-19 pneumonia, whereas, a peribronchovascular distribution pattern, centrilobular nodule or tree-in-bud sign, consolidation, bronchial wall thickening or bronchiectasis, younger age, hyperpyrexia, and a higher level of AST were associated with H1N1 pneumonia. For the primary and validation cohorts, the LASSO model containing above eight clinicoradiologic features yielded an area under curve (AUC) of 0.963 and 0.943, with sensitivity of 89.7 and 86.2%, specificity of 89.7 and 89.7%, and accuracy of 89.7 and 87.1%, respectively. Conclusions: Combination of distribution pattern and category of pulmonary opacity on chest CT with clinical features facilitates the differentiation of COVID-19 pneumonia from H1N1 pneumonia.

9.
Biosci Trends ; 15(2): 93-99, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33776018

RESUMO

As the COVID-19 epidemic is still ongoing, a more rapid detection of SARS-CoV-2 infection such as viral antigen-detection needs to be evaluated for early diagnosis of COVID-19 disease. Here, we report the dynamic changes of SARS-CoV-2 viral antigens in nasopharyngeal swabs of COVID-19 patients and its association with the viral nucleic acid clearance and clinical outcomes. Eighty-five COVID-19 patients were enrolled for detection of SARS-CoV-2 viral antigens, including 57 anti-SARS-CoV-2 antibody negative cases and 28 antibody positive cases. The viral antigen could be detected in 52.63% (30/57) patients with SARS-CoV-2 antibody negative at the early stage of SARS-CoV-2 infection, especially in the first 5 days after disease onset (p = 0.0018) and disappeared in about 8 days after disease onset. Viral antigens were highly detectable in patients with low Ct value (less than 30) of SARS-CoV-2 nucleic acid RT-PCT assay, suggesting the expression of viral antigen was associated with high viral load. Furthermore, positive antigen detection indicated disease progression, nine cases with positive antigen (9/30, 30.0%), in contrast to two cases (2/27, 7.40%) (p = 0.0444) with negative antigen, which progressed into severe disease. Thus, the viral antigens were persistent in early stages of infection when virus was in highly replicating status, and viral antigen detection promises to rapidly screen positive patients in the early stage of SARS-CoV-2 infection.


Assuntos
Antígenos Virais/análise , Teste para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Antígenos Virais/sangue , COVID-19/imunologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Teste para COVID-19/tendências , China/epidemiologia , Progressão da Doença , Diagnóstico Precoce , Reações Falso-Negativas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/imunologia , Nasofaringe/virologia , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Fatores de Tempo , Carga Viral , Adulto Jovem
10.
Ann Transl Med ; 9(3): 216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708843

RESUMO

BACKGROUND: The assessment of the severity of coronavirus disease 2019 (COVID-19) by clinical presentation has not met the urgent clinical need so far. We aimed to establish a deep learning (DL) model based on quantitative computed tomography (CT) and initial clinical features to predict the severity of COVID-19. METHODS: One hundred ninety-six hospitalized patients with confirmed COVID-19 were enrolled from January 20 to February 10, 2020 in our centre, and were divided into severe and non-severe groups. The clinico-radiological data on admission were retrospectively collected and compared between the two groups. The optimal clinico-radiological features were determined based on least absolute shrinkage and selection operator (LASSO) logistic regression analysis, and a predictive nomogram model was established by five-fold cross-validation. Receiver operating characteristic (ROC) analyses were conducted, and the areas under the receiver operating characteristic curve (AUCs) of the nomogram model, quantitative CT parameters that were significant in univariate analysis, and pneumonia severity index (PSI) were compared. RESULTS: In comparison with the non-severe group (151 patients), the severe group (45 patients) had a higher PSI (P<0.001). DL-based quantitative CT indicated that the mass of infection (MOICT) and the percentage of infection (POICT) in the whole lung were higher in the severe group (both P<0.001). The nomogram model was based on MOICT and clinical features, including age, cluster of differentiation 4 (CD4)+ T cell count, serum lactate dehydrogenase (LDH), and C-reactive protein (CRP). The AUC values of the model, MOICT, POICT, and PSI scores were 0.900, 0.813, 0.805, and 0.751, respectively. The nomogram model performed significantly better than the other three parameters in predicting severity (P=0.003, P=0.001, and P<0.001, respectively). CONCLUSIONS: Although quantitative CT parameters and the PSI can well predict the severity of COVID-19, the DL-based quantitative CT model is more efficient.

11.
Theranostics ; 9(26): 8109-8126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754384

RESUMO

Rationale: Ascorbate is an essential micronutrient known for redox functions at normal physiologic concentrations. In recent decades, pharmacological ascorbate has been found to selectively kill tumour cells. However, the dosing frequency of pharmacologic ascorbate in humans has not yet been defined. Methods: We determined that among five hepatic cell lines, Huh-7 cells were the most sensitive to ascorbate. The effects of high-dose ascorbate on hepatoma were therefore assessed using Huh-7 cells and xenograft tumour mouse model. Results: In Huh-7 cells, ascorbate induced a significant increase in the percentage of cells in the G0/G1 phase, apoptosis and intracellular levels of ROS. High doses of ascorbate (4.0 pmol cell-1), but not low doses of ascorbate (1.0 pmol cell-1), also served as a pro-drug that killed hepatoma cells by altering mitochondrial respiration. Furthermore, in a Huh-7 cell xenograft tumour mouse model, intraperitoneal injection of ascorbate (4.0 g/kg/3 days) but not a lower dose of ascorbate (2.0 g/kg/3 days) significantly inhibited tumour growth. Gene array analysis of HCC tumour tissue from xenograft mice given IP ascorbate (4.0 g/kg/3 days) identified changes in the transcript levels of 192 genes/ncRNAs involved in insulin receptor signalling, metabolism and mitochondrial respiration. Consistent with the array data, gene expression levels of AGER, DGKK, ASB2, TCP10L2, Lnc-ALCAM-3, and Lnc-TGFBR2-1 were increased 2.05-11.35 fold in HCC tumour tissue samples from mice treated with high-dose ascorbate, and IHC staining analysis also verified that AGER/RAGE and DGKK proteins were up-regulated, which implied that AGER/RAGE and DGKK activation might be related to oxidative stress, leading to hepatoma cell death. Conclusions: Our studies identified multiple mechanisms are responsible for the anti-tumour activity of ascorbate and suggest high doses of ascorbate with less frequency will act as a novel therapeutic agent for liver cancer in vivo.


Assuntos
Ácido Ascórbico/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
J Leukoc Biol ; 105(2): 215-228, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30633362

RESUMO

Metabolism directs the severe acute inflammatory reaction of monocytes to guard homeostasis. This occurs by sequentially activating anabolic immune effector mechanisms, switching to immune deactivation mechanisms and then restoring immunometabolic homeostasis. Nuclear sirtuin 1 and mitochondrial pyruvate dehydrogenase kinase metabolically drive this dynamic and are druggable targets that promote immunometabolic resolution in septic mice and increase survival. We used unbiased metabolomics and a validated monocyte culture model of activation, deactivation, and partial resolution of acute inflammation to sequentially track metabolic rewiring. Increases in glycogenolysis, hexosamine, glycolysis, and pentose phosphate pathways were aligned with anabolic activation. Activation transitioned to combined lipid, protein, amino acid, and nucleotide catabolism during deactivation, and partially subsided during early resolution. Lipid metabolic rewiring signatures aligned with deactivation included elevated n-3 and n-6 polyunsaturated fatty acids and increased levels of fatty acid acylcarnitines. Increased methionine to homocysteine cycling increased levels of s-adenosylmethionine rate-limiting transmethylation mediator, and homocysteine and cysteine transsulfuration preceded increases in glutathione. Increased tryptophan catabolism led to elevated kynurenine and de novo biosynthesis of nicotinamide adenine dinucleotide from quinolinic acid. Increased branched-chain amino acid catabolism paralleled increases in succinyl-CoA. A rise in the Krebs cycle cis-aconitate-derived itaconate and succinate with decreased fumarate and acetyl-CoA levels occurred concomitant with deactivation and subsided during early resolution. The data suggest that rewiring of metabolic and mitochondrial bioenergetics by monocytes sequentially activates, deactivates, and resolves acute inflammation.


Assuntos
Metabolismo Energético , Inflamação/metabolismo , Inflamação/patologia , Monócitos/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Carnitina/análogos & derivados , Carnitina/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipopolissacarídeos , Metaboloma , Nucleotídeos/metabolismo , Análise de Componente Principal , Células THP-1
13.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089711

RESUMO

Limited understanding of the mechanisms responsible for life-threatening organ and immune failure hampers scientists' ability to design sepsis treatments. Pyruvate dehydrogenase kinase 1 (PDK1) is persistently expressed in immune-tolerant monocytes of septic mice and humans and deactivates mitochondrial pyruvate dehydrogenase complex (PDC), the gate-keeping enzyme for glucose oxidation. Here, we show that targeting PDK with its prototypic inhibitor dichloroacetate (DCA) reactivates PDC; increases mitochondrial oxidative bioenergetics in isolated hepatocytes and splenocytes; promotes vascular, immune, and organ homeostasis; accelerates bacterial clearance; and increases survival. These results indicate that the PDC/PDK axis is a druggable mitochondrial target for promoting immunometabolic and organ homeostasis during sepsis.


Assuntos
Ácido Dicloroacético/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo , Sepse/tratamento farmacológico , Animais , Células Cultivadas , Ácido Dicloroacético/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/imunologia , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Cultura Primária de Células , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Sepse/imunologia , Sepse/mortalidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Resultado do Tratamento
14.
Mol Med Rep ; 14(2): 1817-22, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27357249

RESUMO

Cisplatin is the most common chemotherapeutic agent for gastric cancer (GC), however it activates AKT, which contributes to intrinsic and acquired resistance. Bufalin, a traditional Chinese medicine, shows significant anticancer activity by inhibiting the AKT pathway. It was therefore hypothesized that bufalin could counteract cisplatin resistance in GC cells. SGC7901, MKN­45 and BGC823 human GC cells were cultured under normoxic and hypoxic conditions. Effects of cisplatin and bufalin on GC cells were measured by a cell counting kit, apoptosis was analyzed by flow cytometry, and immunoblotting was used to detect proteins associated with the AKT signaling pathway. It was demonstrated that bufalin synergized with cisplatin to inhibit proliferation and promote apoptosis of GC cells by diminishing the activation of cisplatin-induced AKT under normoxic and hypoxic conditions. Bufalin also inhibits cisplatin-activated molecules downstream of AKT that affect proliferation and apoptosis, including glycogen synthase kinase, mammalian target of rapamycin, ribosomal protein S6 Kinase and eukaryotic translation initiation factor-4E-binding protein-1. To investigate acquired cisplatin resistance, a cisplatin­resistant cell line SGC7901­CR was used. It was demonstrated that bufalin reversed acquired cisplatin resistance and significantly induced apoptosis through the AKT pathway. These results imply that bufalin could extend the therapeutic effect of cisplatin on GC cells when administered in combination.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Ativação Enzimática , Humanos
15.
J Immunol Res ; 2016: 8167273, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904696

RESUMO

Sirtuins (SIRT), first discovered in yeast as NAD+ dependent epigenetic and metabolic regulators, have comparable activities in human physiology and disease. Mounting evidence supports that the seven-member mammalian sirtuin family (SIRT1-7) guard homeostasis by sensing bioenergy needs and responding by making alterations in the cell nutrients. Sirtuins play a critical role in restoring homeostasis during stress responses. Inflammation is designed to "defend and mend" against the invading organisms. Emerging evidence supports that metabolism and bioenergy reprogramming direct the sequential course of inflammation; failure of homeostasis retrieval results in many chronic and acute inflammatory diseases. Anabolic glycolysis quickly induced (compared to oxidative phosphorylation) for ROS and ATP generation is needed for immune activation to "defend" against invading microorganisms. Lipolysis/fatty acid oxidation, essential for cellular protection/hibernation and cell survival in order to "mend," leads to immune repression. Acute/chronic inflammations are linked to altered glycolysis and fatty acid oxidation, at least in part, by NAD+ dependent function of sirtuins. Therapeutically targeting sirtuins may provide a new class of inflammation and immune regulators. This review discusses how sirtuins integrate metabolism, bioenergetics, and immunity during inflammation and how sirtuin-directed treatment improves outcome in chronic inflammatory diseases and in the extreme stress response of sepsis.


Assuntos
Doença de Alzheimer/metabolismo , Doenças Cardiovasculares/metabolismo , Síndrome Metabólica/metabolismo , Sepse/metabolismo , Sirtuínas/metabolismo , Trifosfato de Adenosina/biossíntese , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Metabolismo Energético/genética , Regulação da Expressão Gênica , Homeostase , Humanos , Inflamação , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , NAD/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sepse/genética , Sepse/patologia , Transdução de Sinais , Sirtuínas/genética
17.
Int J Clin Exp Med ; 8(3): 3420-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064232

RESUMO

Bufalin is used to treat many patients with solid malignant tumors clinically. Bufalin could induce gastric cancer cell apoptosis via BAX. microRNA (miRNA) plays important roles in gene regulation. However, miRNA involving in bufalin inducing apoptosis of gastric cancer cells remains to futher research. To study the regulatory role of miRNA in bufalin induced cancer cell apoptosis. Firstly, we verifed that bufalin could induce gastric cancer cell apoptosis by inducing BAX expression. miR-298 was predicted as a regulator of BAX and further study verified Bax was a target gene of miR-298 by luciferase reporter assay. miR-298 could down-regulate BAX on mRNA and protein level in gastric cancer cells. miR-298 promoted cell proliferation and inhibited apoptosis of gastric cancer cells. It was also found that bufalin inhibited cell proliferation and promoted cell apoptosis by down-regualtion of miR-298. In summary, bufalin-associated miR-298 may indirectly be involved in cell proliferation and apoptosis by targeting BAX, pointing to use as a potential molecular target in gastric cancer therapy.

18.
PLoS One ; 10(3): e0120361, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774687

RESUMO

Abnormal DNA methylation is known as playing an important role in the tumorgenesis. It is helpful for distinguishing the specificity of diagnosis and therapeutic targets for cancers based on characteristics of DNA methylation patterns across cancers. High throughput DNA methylation analysis provides the possibility to comprehensively filter the epigenetics diversity across various cancers. We integrated whole-genome methylation data detected in 798 samples from seven cancers. The hierarchical clustering revealed the existence of cancer-specific methylation pattern. Then we identified 331 differentially methylated genes across these cancers, most of which (266) were specifically differential methylation in unique cancer. A DNA methylation correlation network (DMCN) was built based on the methylation correlation between these genes. It was shown the hubs in the DMCN were inclined to cancer-specific genes in seven cancers. Further survival analysis using the part of genes in the DMCN revealed high-risk group and low-risk group were distinguished by seven biomarkers (PCDHB15, WBSCR17, IGF1, GYPC, CYGB, ACTG2, and PRRT1) in breast cancer and eight biomarkers (ZBTB32, OR51B4, CCL8, TMEFF2, SALL3, GPSM1, MAGEA8, and SALL1) in colon cancer, respectively. At last, a protein-protein interaction network was introduced to verify the biological function of differentially methylated genes. It was shown that MAP3K14, PTN, ACVR1 and HCK sharing different DNA methylation and gene expression across cancers were relatively high degree distribution in PPI network. The study suggested that not only the identified cancer-specific genes provided reference for individual treatment but also the relationship across cancers could be explained by differential DNA methylation.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica , Neoplasias/genética , Análise por Conglomerados , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias/metabolismo , Neoplasias/mortalidade , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
19.
Expert Rev Clin Immunol ; 10(9): 1141-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25088223

RESUMO

Epigenetic reprogramming of thousands of genes directs the course of acute systemic inflammation, which is highly lethal when dysregulated during sepsis. No molecular-based treatments for sepsis are available. A new concept supports that sepsis is an immunometabolic disease and that loss of control of nuclear epigenetic regulator sirtuin 1 (SIRT-1), a NAD(+) sensor directs immune and metabolic pathways during sepsis. SIRT-1, acting as homeostasis checkpoint, controls hyper- and hypo-inflammatory responses of sepsis at the microvascular interface, which disseminates inflammatory injury to cause multiple organ failure. Modifying SIRT-1 activity, which can prevent or treat established sepsis in mice, may provide a new way to treat sepsis by epigenetically restoring immunometabolic homeostasis.


Assuntos
Epigênese Genética/imunologia , Inflamação/imunologia , Terapia de Alvo Molecular , Sepse/imunologia , Sirtuína 1/metabolismo , Animais , Permeabilidade Capilar/imunologia , Modelos Animais de Doenças , Homeostase/imunologia , Humanos , Imunomodulação , Inflamação/terapia , Metaboloma , Camundongos , Sepse/terapia , Sirtuína 1/genética , Sirtuína 1/imunologia
20.
J Leukoc Biol ; 96(5): 785-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25001863

RESUMO

Mechanism-based sepsis treatments are unavailable, and their incidence is rising worldwide. Deaths occur during the early acute phase of hyperinflammation or subsequent postacute hypoinflammatory phase with sustained organ failure. The acute sepsis phase shifts rapidly, and multiple attempts to treat early excessive inflammation have uniformly failed. We reported in a sepsis cell model and human sepsis blood leukocytes that nuclear NAD+ sensor SIRT1 deacetylase remodels chromatin at specific gene sets to switch the acute-phase proinflammatory response to hypoinflammatory. Importantly, SIRT1 chromatin reprogramming is reversible, suggesting that inhibition of SIRT1 might reverse postacute-phase hypoinflammation. We tested this concept in septic mice, using the highly specific SIRT1 inhibitor EX-527, a small molecule that closes the NAD+ binding site of SIRT1. Strikingly, when administered 24 h after sepsis, all treated animals survived, whereas only 40% of untreated mice survived. EX-527 treatment reversed the inability of leukocytes to adhere at the small intestine MVI, reversed in vivo endotoxin tolerance, increased leukocyte accumulation in peritoneum, and improved peritoneal bacterial clearance. Mechanistically, the SIRT1 inhibitor restored repressed endothelial E-selectin and ICAM-1 expression and PSGL-1 expression on the neutrophils. Systemic benefits of EX-527 treatment included stabilized blood pressure, improved microvascular blood flow, and a shift toward proimmune macrophages in spleen and bone marrow. Our findings reveal that modifying the SIRT1 NAD+ axis may provide a novel way to treat sepsis in its hypoinflammatory phase.


Assuntos
Imunidade , Fenótipo , Sepse/imunologia , Sepse/metabolismo , Sirtuína 1/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Carbazóis/administração & dosagem , Carbazóis/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotoxinas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Tolerância Imunológica , Imunidade/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Sepse/tratamento farmacológico , Sepse/genética , Sepse/mortalidade , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA