Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069136

RESUMO

Electrocatalysts with high efficiency and low cost are always urgently needed for oxygen reduction reaction (ORR). As a new carbon allotrope, graphdiyne (GDY) has received much attention due to its unique chemical structure containing sp- and sp2-hybridized carbons, and intrinsic electrochemical activity ascribed to its inherent conductivity. Herein, we prepared two graphdiyne materials named GDY nanotube and nitrogen-doped GDY (NGDY) nanotube via cross-coupling reactions on the surface of Cu nanowires. As metal-free catalysts, their electrocatalytic activities for ORR were demonstrated. The results showed that the NGDY nanotube presents more excellent electrochemical performance than that of the GDY nanotube, including more positive potential and faster kinetics and charge transfer process. The improvement can be ascribed to the greater number of structural electrocatalytic active sites from nitrogen atoms as well as the hollow nanotube morphology, which is beneficial to the adsorption of oxygen and acceleration of the catalytic reaction. This work helps develop high-quality graphdiyne-based electrocatalysts with well-defined chemical structures and morphologies for various electrochemical reactions.


Assuntos
Grafite , Nanotubos , Humanos , Hipóxia , Carbono , Oxigênio , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA