Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
J Agric Food Chem ; 72(19): 10828-10841, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691839

RESUMO

Chemosensory proteins (CSPs) constitute a class of olfactory proteins localized in insect sensory organs that serve a crucial function in decoding external chemical stimuli. This study aims to elucidate the involvement of CrufCSP3 in olfactory perception within the context of Cotesia ruficrus, an indigenous endoparasitoid targeting the invasive pest Spodoptera frugiperda. Through fluorescence-competitive binding assays and site-directed mutagenesis, we pinpointed four amino acids as pivotal residues involved in the interaction between CrufCSP3 and five host-related compounds. Subsequent RNA interference experiments targeting CrufCSP3 unveiled a reduced sensitivity to specific host-related compounds and a decline in the parasitism rate of the FAW larvae. These findings unequivocally indicate the essential role of CrufCSP3 in the chemoreception process of C. ruficrus. Consequently, our study not only sheds light on the functional importance of CSPs in parasitic wasp behavior but also contributes to the development of eco-friendly and efficacious wasp behavior modifiers for effectively mitigating pest population surges.


Assuntos
Proteínas de Insetos , Spodoptera , Vespas , Animais , Vespas/química , Vespas/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Larva/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Percepção Olfatória
2.
Insects ; 15(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667409

RESUMO

The pea aphid, Acyrthosiphon pisum, is a major pest of legume crops, exhibiting distinct polymorphism in terms of wings and body color. We found that, under crowded conditions, the red morph A. pisum produced more winged offspring than the green morph. The signaling pathways involved in aphid wing determination, like insulin and ecdysone, also play important roles in regulating growth, development, and metabolism. Thus, here, we examined the association between the wing-producing ability and the growth rate, development time, reproductive capacity, and energy metabolism in these two color morphs. The growth rate of red morphs was significantly higher than that of green morphs, whereas green morphs produced more offspring during the first 6 days of the adult stage. Red morphs accumulated higher levels of glycogen and triglycerides and consumed more triglycerides during starvation; however, green aphids consumed more trehalose during food deprivation. Red aphids exhibited stronger starvation tolerance, possibly due to their higher triglyceride catabolic activity. Furthermore, the expression levels of genes involved in the insulin pathway, glycolysis, and lipolysis in red aphids were higher than those in green aphids. These results suggest that the wing-producing ability of the pea aphid may be associated with its growth and metabolism, which may be due to the shared regulatory signaling pathways.

3.
Toxicol Appl Pharmacol ; 484: 116877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431228

RESUMO

Breast cancer, the most common cancer, presents a significant challenge to the health and longevity of women. Aspongopus chinensis Dallas is an insect with known anti-breast cancer properties. However, the anti-breast cancer effects and underlying mechanisms have not been elucidated. Exogenous microRNAs (miRNAs), which are derived from plants and animals, have been revealed to have notable capacities for controlling the proliferation of cancerous cells. To elucidate the inhibitory effects of miRNAs derived from A. chinensis and the regulatory mechanism involved in the growth of breast cancer cells, miRNA sequencing was initially employed to screen for miRNAs both in A. chinensis hemolymph and decoction and in mouse serum and tumor tissue after decoction gavage. Subsequently, the experiments were performed to assess the suppressive effect of ach-miR-276a-3p, the miRNA screened out from a previous study, on the proliferation of MDA-MB-231 and MDA-MB-468 breast cancer cell lines in vitro and in vivo. Finally, the regulatory mechanism of ach-miR-276a-3p in MDA-MB-231 and MDA-MB-468 breast cancer cells was elucidated. The results demonstrated that ach-miR-276a-3p notably inhibited breast cancer cell proliferation, migration, colony formation, and invasion and induced cell cycle arrest at the G0/G1 phase. Moreover, the ach-miR-276a-3p mimics significantly reduced the tumor volume and weight in xenograft tumor mice. Furthermore, ach-miR-276a-3p could induce cell cycle arrest by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway. In summary, ach-miR-276a-3p, derived from A. chinensis, has anti-breast cancer activity by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway and can serve as a promising candidate anticancer agent.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Animais , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Pontos de Checagem do Ciclo Celular , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Quinase 2 Dependente de Ciclina/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Pest Manag Sci ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511881

RESUMO

BACKGROUND: Afidopyropen is a novel insecticide with high selectivity between sucking insects such as the peach aphids Myzus persicae and natural enemies like the seven-spotted lady beetle Coccinella septempunctata. However, the mechanisms of selective action for afidopyropen remain unknown. RESULTS: The LC50 values of afidopyropen to the 1st-4th instar larvae and adult C. septempunctata were 372- to more than 7267-fold higher than that to adult M. persicae. Though the activity of cytochrome P450s in M. persicae was 6.1- to 7.5-fold higher than that in C. septempunctata, the latter has much higher activities of carboxylesterase (CarEs) and glutathione S-transferases (GSTs), and the crude enzyme of C. septempunctata and M. persicae showed similar metabolism efficiency to afidopyropen. Molecular docking results demonstrated that afdopyropen showed higher binding affinity to the vanilloid-type transient receptor potential (TRPV) channel of M. persicae (-9.1 kcal/mol) than to that of C. septempunctata (-8.2 kcal/mol). And the EC50 value of afdopyropen to the TRPV channel of C. septempunctata (41 360 nM) was 19 885-fold higher than that in M. persicae (2.08 nM). CONCLUSIONS: Our results demonstrated that the significantly different sensitivity of M. persicae and C. septempunctata TRPV channel to afidopyropen play a key role in the high selectivity of afidopyropen. These findings provide new insights into the selective mechanisms of afidopyropen against insect pests and natural enemies as well as the theory support for coordinated application of chemical control and biological control. © 2024 Society of Chemical Industry.

5.
Pest Manag Sci ; 80(6): 3000-3009, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38312101

RESUMO

BACKGROUND: To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS: The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 µm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 µm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION: Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.


Assuntos
Afídeos , Inseticidas , Neonicotinoides , Solanum tuberosum , Tiametoxam , Tiazóis , Animais , Afídeos/efeitos dos fármacos , Afídeos/genética , Solanum tuberosum/parasitologia , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Tiazóis/farmacologia , Vespas/efeitos dos fármacos , Vespas/fisiologia , Oxazinas/farmacologia , Nitrocompostos/farmacologia , Ninfa/efeitos dos fármacos , Ninfa/crescimento & desenvolvimento , Ninfa/parasitologia
6.
Int J Biol Macromol ; 260(Pt 2): 129644, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266832

RESUMO

Afidopyropen is highly effective against sucking insects, including the Myzus persicae, that modulates the transient receptor potential vanilloid (TRPV) channel. However, the action mechanisms of afidopyropen to the TRPV channel remain unknown. In this study, the genes encoding the Nanchung (MpNan) and Inactive (MpIav) subunits of the TRPV channel of M. persicae (MpTRPV) were cloned, and their spatiotemporal expression profiles were investigated. Then, MpTRPV was functionally expressed in Xenopus laevis oocytes, and the AA residues crucial for afidopyropen binding were identified using the two-electrode voltage clamp (TEVC) technique. The results showed that both MpNan and MpIav exhibited the highest expression in the antennae and were most abundant in the 4th instar nymphs and adults. Knockdown of these two genes by RNAi greatly increased the toxicity of afidopyropen to the aphids. Moreover, the AA residues involved in afidopyropen binding to MpNan were predicted and L412 was further identified as the key residue for binding by TEVC analysis. The results also showed that afdopyropen and pymetrozine share the same binding site. These findings lay a foundation not only for exploring the mechanisms of pest target resistance to afidopyropen and pymetrozine but also for developing new insecticides targeting the TRPV channels of pests.


Assuntos
Afídeos , Compostos Heterocíclicos de 4 ou mais Anéis , Inseticidas , Lactonas , Canais de Potencial de Receptor Transitório , Animais , Afídeos/genética , Aminoácidos , Inseticidas/farmacologia
7.
Insect Sci ; 31(2): 387-404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37486126

RESUMO

Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.


Assuntos
Acetil-CoA Carboxilase , Blattellidae , Feminino , Animais , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Lipogênese , Blattellidae/genética , Blattellidae/metabolismo , Homeostase , Açúcares/metabolismo , Sacarose/metabolismo , Lipídeos
8.
Insect Sci ; 31(1): 236-254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37370252

RESUMO

In a tritrophic context of plant-insect-entomopathogen, plants play important roles in modulating the interaction of insects and their pathogenic viruses. Currently, the influence of plants on the transmission of insect viruses has been mainly studied on baculoviruses and some RNA viruses, whereas the impact of plants on other insect viruses is largely unknown. Here, we identified a new densovirus infecting the green peach aphid Myzus persicae and tested whether and how host plants influence the transmission of the aphid densovirus. The complete single-stranded DNA genome of the virus, M. persicae densovirus 2, is 5 727 nt and contains inverted terminal repeats. Transcription and phylogenetic analysis indicated that the virus was distinct from other a few identified aphid densoviruses. The virus abundance was detected highly in the intestinal tract of aphids, compared with the lower level of it in other tissues including head, embryo, and epidermis. Cabbage and pepper plants had no obvious effect on the vertical transmission and saliva-mediated horizontal transmission of the virus. However, the honeydew-mediated horizontal transmission among aphids highly depended on host plants (65% on cabbages versus 17% on peppers). Although the virus concentration in the honeydew produced by aphids between 2 plants was similar, the honeydew production of the infected aphids reared on peppers was dramatically reduced. Taken together, our results provide evidence that plants influence the horizontal transmission of a new densovirus in an aphid population by modulating honeydew secretion of aphids, suggesting plants may manipulate the spread of an aphid-pathogenic densovirus in nature.


Assuntos
Afídeos , Densovirus , Animais , Afídeos/genética , Filogenia
9.
Environ Pollut ; 342: 123083, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061430

RESUMO

Chemical insecticides are the most effective pest control agents. Afidopyropen is a novel insecticide used against sap-sucking insects, such as aphids. However, the effects of repeated afidopyropen application on the structure and function of soil microorganisms remain unknown. In this study, the changes in the enzyme activities, community structure and function, and relative abundance of antibiotic resistance ontology (ARO) of soil microorganisms were investigated during three repeated afidopyropen applications under laboratory conditions at the maximum recommended dosage (M1) and 10 times the M1 (M10). The neutral phosphatase (NPA) and catalase (CAT) activities in the soil were significantly suppressed after afidopyropen treatment. The Simpson diversity index (1/D) and Shannon-Wiener diversity index (H) also decreased in both the M1 and M10 afidopyropen-treated soils, indicating a remarkable decrease in soil microorganism diversity. The average well color development (AWCD) first increased and subsequently recovered to normal levels after the third application of the insecticide, suggesting that afidopyropen application could increase the metabolic activity of soil microorganisms. Metagenomic analysis showed that repeated afidopyropen application in both the M1 and M10 treatment groups altered the community structure of soil microorganisms, albeit in different ways. Furthermore, repeated afidopyropen application significantly increased the relative ARO abundance, especially in the M10 treatment, with the most dominant AROs being adeF, baeS, and IND-6. These findings reveal the effects of excessive afidopyropen application on soil microorganisms and lay an important foundation for the comprehensive evaluation of the impact of this insecticide on the environment.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis , Inseticidas , Lactonas , Microbiota , Inseticidas/toxicidade , Solo/química , Microbiologia do Solo
10.
Pest Manag Sci ; 80(2): 776-785, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37776321

RESUMO

BACKGROUND: Anisopteromalus calandrae (Howard) is a solitary ectoparasitoid with wide-ranging potential applications as a natural biological control agent against various coleopterous pests in food warehouses. Implementing an effective cold storage program is crucial for extending the shelf life of biological control agents and ensuring their stable and abundant supply. Herein, we attempted to determine the optimal cold storage conditions for Anisopteromalus calandrae by investigating the effect of cold storage at three different temperatures (7, 13, and 19 °C) for 7, 21, and 35 days on four developmental stages (late-instar larvae, early-stage pupae, mid-stage pupae, and 2-day-old adults). Additionally, we explored the maximum cold storage potential by observing early-stage pupae stored at 13 °C for various durations (30, 60, 90, 120, and 150 days). RESULTS: The most suitable cold storage temperature for the early-stage pupae of Anisopteromalus calandrae was 13 °C, and the highest adult emergence rate (98.3%) was after 90 days of storage at 13 °C. Furthermore, we did not find any significant effect on longevity (female: 44.3 days; male: 38.1 days) or fecundity (121.7 wasps). The female ratio ranged from 43.5% to 50.8%. More importantly, cold storage did not adversely affect the developmental duration or fecundity of the offspring. CONCLUSION: This study offers crucial insights for managing Anisopteromalus calandrae populations under laboratory conditions and lays the foundation for potential industrial production and development. © 2023 Society of Chemical Industry.


Assuntos
Agentes de Controle Biológico , Vespas , Animais , Feminino , Masculino , Larva , Temperatura Baixa , Fertilidade , Pupa , Controle Biológico de Vetores/métodos
11.
Pest Manag Sci ; 80(4): 1821-1830, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38029362

RESUMO

BACKGROUND: Tomato (Solanum lycopersicum L.) is an economically important vegetable crop around the globe. Tomato yellow leaf curling (TYLC) is the most devastating viral disease posing a serious threat to tomato production throughout the tropical and subtropical world. Induction of microbe-mediated systemic resistance in plants has been of great interest in recent years as a novel microbiological tool in disease and insect pest management. This in-vitro study aimed to determine the effectiveness of different strains (BB252, BB72 and ARSEF-2860) of a hypocreal fungus Beauveria bassiana against TYLCV disease and aphid Myzus persicae. Potted tomato plants exogenously treated with conidial and filtrate suspensions of B. bassiana strains and of their partially purified or purified proteins were exposed to TYLCV inoculum and aphid M. persicae. RESULTS: Results showed a significant suppression of TYLCV disease severity index by the exogenous application of conidial, filtrate and protein treatments of all B. bassiana strains and this response was directly proportional to the treatment concentration. Similarly, mean fecundity rate of M. persicae was also significantly reduced by the highest concentration of ARSEF-2860-derived elicitor protein PeBb1, followed by the highest concentrations of BB252- and BB72-derived partially purified proteins. Moreover, these B. bassiana-derived proteins also caused a significant upregulation of most of the plant immune marker genes associated with plant defense. CONCLUSION: Overall, the study findings suggest that these B. bassiana strains and their partially purified or purified elicitor proteins could be effective biological tools for the management of TYLCV and aphid infestation on tomato plants. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Beauveria , Begomovirus , Solanum lycopersicum , Animais , Doenças das Plantas/prevenção & controle , Begomovirus/fisiologia
12.
Insects ; 14(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132594

RESUMO

Chemosensory proteins (CSPs) are a class of soluble proteins that facilitate the recognition of chemical signals in insects. While CSP genes have been identified in many insect species, studies investigating their function remain limited. Cotesia ruficrus (Hymenoptera: Braconidae) holds promise as an indigenous biological control agent for managing the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. This study aimed to shed light on the gene expression, ligand binding, and molecular docking of CrufCSP1 in C. ruficrus. A RT-qPCR analysis revealed that the expression of CrufCSP1 was higher in the wings, with male adults exhibiting significantly higher relative expression levels than other developmental stages. A fluorescence competitive binding analysis further demonstrated that CrufCSP1 has a high binding ability with several host-related volatiles, with trans-2-hexenal, octanal, and benzaldehyde showing the strongest affinity to CrufCSP1. A molecular docking analysis indicated that specific amino acid residues (Phe24, Asp25, Thr53, and Lys81) of CrufCSP1 can bind to these specific ligands. Together, these findings suggest that CrufCSP1 may play a crucial role in the process of C. ruficrus locating hosts. This knowledge can contribute to the development of more efficient and eco-friendly strategies for protecting crops and managing pests.

13.
Insects ; 14(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132610

RESUMO

In nature, plants can contain variable nutrients depending upon the species, tissue, and developmental stage. Insect herbivores may regulate their nutrient intake behaviorally and physio- logically when encountering different foods. This study examined the nutritional regulation of the oriental armyworm, Mythimna separata, for the first time. In one experiment, we allowed the cater-pillars to choose between two nutritionally balanced but complementary diets. The caterpillars did not randomly consume the paired foods, but instead chose between the nutritionally balanced but complementary diets. This intake behavior was found to change with their developmental stages. Furthermore, the nutrient concentrations in food significantly impacted the insect's performance. In the other experiment, caterpillars were given one of eleven diets that reflected the different nutrient conditions in the field. The results showed that proteins were significantly associated with developmental time and fecundity. For example, by consuming protein-biased food, the caterpillars developed faster and produced more eggs. In contrast, carbohydrates were more strongly linked to lipid accumulation, and caterpillars accumulated more lipids when consuming the carbohydrate-biased food. Moreover, the caterpillars were also found to actively regulate their intake of proteins and carbohydrates based on food quality and to physiologically prepare for subsequent life stages. These findings enhance our understanding of how M. separata feeds and responds to different nutritional environments in the field, which could have implications for managing insect herbivores in agricultural settings.

14.
Insect Sci ; 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689966

RESUMO

Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.

16.
Insects ; 14(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367312

RESUMO

Maternal effects can reduce offspring susceptibility to predators by altering resource allocation to young and reproducing larger offspring. While the perception of predation risk can vary according to a prey's life stage, it is unclear whether maternally experienced intraguild predation (IGP) risk during different life stages influences the maternal effects of predatory insects. We investigated the influence of exposure to intraguild predators (Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae)) during the larval and/or adult stages on reproductive decisions and offspring growth in Menochilus sexmaculatus (Fabricius). Independent of the life stage, when M. sexmaculatus females experienced IGP risk, their body weight and fecundity decreased, but the proportion of trophic eggs produced increased. However, egg mass, egg clutch number, and egg clutch size were not influenced by the treatment. Next, when offspring encountered H. axyridis, mothers experiencing IGP risk during the larval and/or adult stages could increase their offspring's weight. Moreover, offspring in IGP environments reached a similar size as those with no-IGP environments when mothers experienced IGP risk during the larval and/or adult stages. Overall, M. sexmaculatus larval and/or adult exposure to IGP risk had no influence on egg size, but increased offspring body size when faced with H. axyridis. Additionally, mothers experiencing IGP risk during different life stages showed increased production of trophic eggs. Because IGP is frequently observed on M. sexmaculatus and favours relatively larger individuals, different stages of M. sexmaculatus express threat-sensitively to IGP risk; inducing maternal effects can be an adaptive survival strategy to defend against H. axyridis.

17.
J Fungi (Basel) ; 9(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37233286

RESUMO

Concerns regarding the ecological and health risks posed by synthetic insecticides have instigated the exploration of alternative methods for controlling insects, such as entomopathogenic fungi (EPF) as biocontrol agents. Therefore, this review discusses their use as a potential alternative to chemical insecticides and especially focuses on the two major ones, Beauveria bassiana and Metarhizium anisopliae, as examples. First, this review exemplifies how B. bassiana- and M. anisopliae-based biopesticides are used in the world. Then, we discuss the mechanism of action by which EPF interacts with insects, focusing on the penetration of the cuticle and the subsequent death of the host. The interactions between EPF and the insect microbiome, as well as the enhancement of the insect immune response, are also summarized. Finally, this review presents recent research that N-glycans may play a role in eliciting an immune response in insects, resulting in the increased expression of immune-related genes and smaller peritrophic matrix pores, reducing insect midgut permeability. Overall, this paper provides an overview of the EPF in insect control and highlights the latest developments relating to the interaction between fungi and insect immunity.

18.
Microb Ecol ; 86(3): 2173-2182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37154919

RESUMO

Insect-associated bacteria can mediate the intersection of insect and plant immunity. In this study, we aimed to evaluate the effects of single isolates or communities of gut-associated bacteria of Helicoverpa zea larvae on herbivore-induced defenses in tomato. We first identified bacterial isolates from the regurgitant of field-collected H. zea larvae by using a culture-dependent method and 16S rRNA gene sequencing. We identified 11 isolates belonging to the families Enterobacteriaceae, Streptococcaceae, Yersiniaceae, Erwiniaceae, and unclassified Enterobacterales. Seven different bacterial isolates, namely Enterobacteriaceae-1, Lactococcus sp., Klebsiella sp. 1, Klebsiella sp. 3, Enterobacterales, Enterobacteriaceae-2, and Pantoea sp., were selected based on their phylogenetic relationships to test their impacts on insect-induced plant defenses. We found that the laboratory population of H. zea larvae inoculated with individual isolates did not induce plant anti-herbivore defenses, whereas larvae inoculated with a bacterial community (combination of the 7 bacterial isolates) triggered increased polyphenol oxidase (PPO) activity in tomato, leading to retarded larval development. Additionally, field-collected H. zea larvae with an unaltered bacterial community in their gut stimulated higher plant defenses than the larvae with a reduced gut microbial community. In summary, our findings highlight the importance of the gut microbial community in mediating interactions between herbivores and their host plants.


Assuntos
Mariposas , Solanum lycopersicum , Humanos , Animais , Zea mays , Defesa das Plantas contra Herbivoria , Filogenia , RNA Ribossômico 16S/genética , Larva/microbiologia , Bactérias/genética , Enterobacteriaceae , Herbivoria
19.
J Econ Entomol ; 116(3): 790-797, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37085154

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a significant invasive pest identified as a serious threat to global agricultural production and food security. However, its ovipositional preference, larval feeding selectivity, and nutritional indices are less studied. Here, we investigated these traits of FAW when fed on maize, wheat, soybean, tomato, cotton, and Chinese cabbage, and analyzed the correlation between its nutritional indices and the nutritional contents of crops. The results showed that the highest number of eggs were laid on maize and the lowest number were laid on tomato. The highest feeding choice rate of third instar larvae was on maize, and the lowest was on Chinese cabbage. The fifth instar larvae showed the highest feeding choice rate on maize, but no significant differences were found among other crop species. The food consumption (FC), the relative growth rate (RGR), and the approximate digestibility (AD) were significantly higher on maize and wheat, while the efficiency of conversion of ingested food (ECI) and the efficiency of conversion of digested food (ECD) were significantly higher when fed on cotton and Chinese cabbage. The FC, the relative consumption rate (RCR), RGR, and AD were significantly and positively correlated with soluble sugar and protein contents of host plants, while the ECI and ECD were significantly and negatively correlated with the soluble sugar content. The present study indicates that FAW may cause potential economic losses to these crops besides maize, and these findings are valuable in managing and controlling this pest.


Assuntos
Brassica , Mariposas , Solanum lycopersicum , Animais , Spodoptera , Larva , Avaliação Nutricional , Produtos Agrícolas , Zea mays , Açúcares
20.
Ecotoxicol Environ Saf ; 252: 114584, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724709

RESUMO

The green peach aphid, Myzus persicae (Sulzer), is a significant global pest in horticultural and field crops. Afidopyropen is a novel systemic insecticide with high efficacy against sucking pests, and it is suitable for the management of M. persicae. However, the persistent toxicity and dissipation dynamics of afidopyropen in vegetables remain unknown. In this study, we determined the residual activity and dissipation dynamics of afidopyropen against M. persicae on cabbage and chili. The data showed that the toxicity of afidopyropen against M. persicae lasted more than 30 days; the corrected mortality was greater than 80% 10 days after application and was 50-60% 30 days post-application. The afidopyropen residues on cabbage and chili plants were quantified using ultrahigh-pressure liquid chromatography-tandem mass spectrometry. The dissipation half-lives of afidopyropen on cabbage and chili plants ranged from 1.45 to 2.34 days and 3.98-5.98 days at different recommended dosages, respectively. Our findings provide valuable data for the maximum residue limits of afidopyropen on vegetables and will help growers determine the frequency and timing of its application on cabbage and chili.


Assuntos
Afídeos , Brassica , Inseticidas , Animais , Inseticidas/toxicidade , Compostos Heterocíclicos de 4 ou mais Anéis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA